Тормоза: классификация, устройство и принцип действия, типы механизмов

Содержание

Основная информация

Основной функцией тормозной системы считается управление скоростью машины, ее остановкой, а также удержанием ее в одном положении с помощью силы торможения между дорогой и колесами машины. Сила торможения может образовываться автомобильным двигателем, механизмом остановки колес авто, электронным или гидравлическим замедляющим тормозом, который находится в трансмиссии. Для функционирования всех вышеперечисленных функций на транспортное средство устанавливают такие виды тормозных систем как:

  • Рабочая. Этот тип системы применяется на любой скорости машины для полной остановки или же снижения скорости. Причем она начинает функционировать сразу же после нажатия на педаль тормоза. Представленная система считается самой эффективной по сравнению с остальными типами.
  • Запасная. Используется в том случае, если основной блок торможения неисправен. Данный тип тормозного блока может быть двух видов, автономным или же ее функции выполняет часть рабочей системы торможения.
  • Стояночная. Является необходимой для удержания машины на протяжении определенного времени на месте. То есть благодаря ей полностью исключается вероятность передвижения авто без ведома водителя.
  • Добавочная. Используется на транспортных средствах, которые имеют повышенную массу, для остановки на спусках. Довольно часто происходит так, что функции этой системы остановки выполняются двигателем, на котором трубопровод перекрывается при помощи заслонки.

Блок торможения считается самым важным устройством для гарантирования безопасности машины. На легковых и некоторых грузовых автомобилях используются разные приспособления и блоки, которые повышают эффективность блока остановки и устойчивости в момент остановки. К таким устройствам относятся:

  • Усилитель срочной остановки;
  • Тормозной усилитель;
  • Антиблокирующий блок.

Конструкция тормозного блока

Тормозной блок компонует конструкцию и привод остановки. Главной функцией механизма торможения является создание момента, который необходим для уменьшения скорости и полного остановки авто. На транспортных средствах применяется фрикционная конструкция остановки, которые функционируют на основании силы трения. Механика рабочего блока обычно располагается в автомобильных колесах, а стояночного блока за раздаткой или же за коробкой передач.

Зависимо от устройства фрикционной части выделяют механизмы диска и барабана. Механизм остановки имеет неподвижную и вращающуюся части.

Роль подвижной части барабанной конструкции остановки играет барабан остановки, а не вращающийся ленты или колодки торможения. подвижная часть конструкции диска торможения имеет вид диска, а невращающаяся колодками торможения.

На осях современных легковых авто обычно располагается дисковая конструкция торможения. Дисковой механизм торможения состоит из таких элементов:

  • Диск торможения;
  • Две не вращающийся колодки, которые устанавливаются в середине суппорта с двух сторон.

Суппорт закрепляется на кронштейнах, а в его пазах устанавливаются цилиндры, приживающие колодки в момент остановки к диску. Диск в момент остановки очень нагревается, а его охлаждение происходит за счет воздушного потока.

Для улучшения отхода теплоты на диске делаются небольшие отверстия. Такие диски будут называться вентилируемыми. Для большей эффективности остановки и устойчивости к перегреваниям на спортивных машинах используются керамические диски торможения. Колодки торможения прижимаются к суппорту при помощи пружинных элементов. На колодках закрепляются фрикционные накладки, а на нынешних транспортных средствах колодки торможения оснащаются датчиком уровня износа.

В чем заключается принцип действия системы торможения?

Давайте рассмотрим принцип действия системы торможения на примере гидравлического рабочего блока. В момент нажатия на тормоз нагрузка переходит на усилитель, создающий добавочное усиление на основном цилиндре. Поршень основного цилиндра торможения собирает всю жидкость в цилиндрах автомобильных колес с помощью трубопроводов. Причем в этот же момент происходит увеличение давления жидкости в приводе тормоза. Благодаря поршням цилиндров автомобильных колес происходит перемещение тормозящих колодок к дискам, или как их еще называют барабанам.

После нажатия на тормоз проходит увеличение давления жидкости, вследствие чего проходит активация механизмов торможения, приводящих вращение автомобильных колес в замедление и образование силы торможения в месте контакта шин авто с покрытием дороги. Причем чем больше будет прикладываться сила к педали тормоза, тем эффективнее и быстрее произойдет остановление автомобильных колес.

Давление жидкости в момент остановки может достигать от десяти до пятнадцати мегапаскалей.

В момент окончания торможения педаль при воздействии пружины возврата переходит в обратное положение. Также в обратное расположение переходит поршень основного цилиндра торможения. Части пружин отводятся от барабанов при помощи колодок. Тормозная жидкость переходит в основной цилиндр торможения из цилиндров автомобильных колес благодаря трубопроводам. Таким образом, проходит понижение давления системы торможения. Эффективность системы торможения сильно увеличивается благодаря использованию систем безопасности транспортного средства.

Процесс работы тормозной системы

Процесс работы тормозной системы в большинстве легковых автомобилей происходит следующим образом: водитель нажимает на тормозную педаль, которая, в свою очередь, передает усилие на главный тормозной цилиндр через вакуумный усилитель тормозов.

Как отследить состояние элементов тормозного механизма?

Именно на тормозной механизм приходится основная нагрузка при торможении. От состояния его элементов в значительной степени зависит эффективность всего процесса. Поэтому минимум два раза в год имеет смысл проверить, как же обстоит дело с тормозами на вашей машине.

В случае с барабанным тормозным механизмом без снятия колеса в принципе не обойтись, так как все его элементы находятся внутри барабана без визуального доступа к ним. Дисковые тормоза допускают визуальный осмотр (если, конечно, обзор не закрывают колпаки или особенности дизайна колёсного диска). Нормальной считается толщина фрикционного слоя не менее 3,5 мм. Впрочем, даже если вы увидели именно такую картину, это ещё не повод успокаиваться: бывает так, что наружная и внутренняя колодки изнашиваются неравномерно. В большинстве дисковых тормозных механизмов внутренняя колодка «подходит» быстрее.

В движении, как всегда поступает опытный водитель, следует обращать внимание на то, как ведёт себя машина, какие звуки издаёт при торможении, как реагирует педаль тормоза на нажатие. Неприятные скрипы, появление металлической стружки на тормозных дисках, увеличение хода педали тормоза, вибрация при торможении или увод автомобиля в сторону – признаки износа элементов тормозного механизма.

О том, что тормозные колодки пора менять, могут сообщить специальные датчики – механические или электронные. Первые представляют собой металлическую пластинку из пружинной стали, которая при износе фрикционного слоя колодки начинает тереться о тормозной диск и издавать посторонний звук – «противный скрип». При срабатывании электронного датчика загорается соответствующий индикатор на приборной панели.

Проверка эффективности рабочей тормозной системы на стенде с беговыми барабанами

Контуры подключения

Отказ тормозов всегда был самым большим кошмаром любого водителя. Поэтому инженеры давно придумали, как сделать, чтобы можно было остановить машину даже с поврежденной тормозной системой (а повредить гидравлическую систему проще, чем любую другую. Потек уплотнитель – и привет горячий).

Одним из вариантов страховки на случай отказа стало разнесение системы на два контура. Оказалось, двухконтурные тормоза это не так сложно, как могло быть, зато надежно и безопасно. Даже если один из контуров откажет, система продолжит работать, позволив избежать аварии.

Есть 5 вариантов компоновки контуров гидравлической системы:

  1. 4+2, параллельная со страховкой передней оси. Один контур запитывает все четыре колеса, второй – только два передних.

    Контуры параллельные, схема 4+2

  2. 2+2, параллельная. Один контур на переднюю ось, второй на заднюю. Так чаще всего конструируют заднеприводные автомобили.

    Контуры параллельные, схема 2+2

  3. 2+2, диагональная. Один контур идет на левое переднее и правое заднее колесо, второй на правое переднее и левое заднее. Эту систему обычно ставят на переднеприводные автомобили.

    Контуры диагональные, схема 2+2

  4. 3+3, комбинированная. Один контур идет на передние колеса и правое заднее, а другой тоже идет на передние колеса и на левое заднее.

    Контур комбинированный, схема 3+3

  5. 4+4, параллельная. Два контура подводятся на все 4 колеса параллельно.

    Контур параллельный, схема 4+4

В большинстве случаев владелец автомобиля даже не задумывается, какая там у него схема разнесения контуров. Тормоза работают – и отлично.

Материалы применяемые в тормозных системах

До сих пор мы исходили из того, что диски тормозов изготовлены из чугуна или стали. Но почему именно из них? Оказывается, к материалу диска предъявляется много требований. Кроме очевидной прочности и высокого коэффициента трения это еще и стабильность характеристик при нагреве, высокая теплопроводность, большая теплоемкость, стойкость к тепловому удару вследствие быстрого и сильного нагрева, а так же низкая способность к адгезии, дабы пары трения не прилипали друг к другу. Среди металлов этим требованиям в некоторой степени отвечают отдельные сорта стали и чугуна. И все же падение коэффициента трения по мере нагрева и склонность к короблению ограничивают температуру таких тормозов на уровне 500 градусов.

Есть и более стойкие материалы. Например, керамические диски способны выдержать нагрев едва ли не до 1000оС, почти не снижая при этом коэффициент трения. А уж если вспомнить, что они в два раза легче стальных, не склонны к деформации при резкой смене температур и обладают ресурсом, исчисляющимся сотнями тысяч километров, то в перспективе этой технологии почти не сомневаешься. Но, увы, всё предопределила их огромная стоимость – в среднем разница с обычными тормозами составляет несколько тысяч евро! При такой цене керамические диски остаются уделом лишь избранных суперкаров, тем более что почувствовать преимущества таких тормозов можно лишь в гоночных условиях. Подтверждением тому служит проведенный недавно нами тест двух Porsche Panamera, где модель с керамическими дисками даже проиграла в замерах тормозного пути – всё решили более цепкие покрышки.

Нельзя не упомянуть и про карбоновые диски, получившие широкое распространение в автоспорте, особенно в Формуле-1. Их главные преимущества над керамическими – примерно в пять раз меньший вес, рост(!) коэффициента трения по мере нагрева и чуть большая предельная температура – около 1200оС. Однако диапазон рабочих температур у них уже – от 300 до 650 градусов. Если нагрев недостаточен, то коэффициент трения мал, и торможение неэффективно, если же температура повышена, то карбон быстро окисляется и изнашивается. Именно поэтому гонщики Формулы-1 всегда греют тормоза перед стартом гонки, а сами тормоза оснащены специальными воздухозаборниками, захватывающими воздух для охлаждения со скоростью до 400 литров в секунду! Но и этого иногда оказывается недостаточно, и тогда на долгих интенсивных торможениях мы видим, как из колес болидов летит черная карбоновая пыль разрушающихся от перегрева дисков. В общем, исключительно гоночная технология, неприменимая в условиях обычных езды.

Мы вернемся к реальности и поговорим о колодках – не менее важной детали тормозов. В отличие от дисков, фрикционный материал колодки испытывает не столь разносторонние механические нагрузки (в основном это нагрузка на сдвиг и сжатие), а потому требования к прочности не столь высоки и для изготовления можно применять различные композитные материалы. В частности, используются составы, включающие в себя около десятка различных компонентов, каждый из которых отвечает за какое-либо свойство. Например, оксиды металлов повышают коэффициент трения и износостойкость, а графит предотвращает «схватывание». В качестве же армирующего компонента, основы, используют различные заменители асбеста (сам асбест ныне не применяется в связи с его канцерогенными свойствами). Все эти компоненты, взятые в определенной пропорции – в зависимости от требуемых характеристик – смешиваются с каким-либо связующим веществом (видом смолы или каучука), нагреваются и спрессовываются. На выходе – фрикционные накладки для колодок. В общем, в распоряжении инженеров есть масса рецептов и возможностей придания колодкам тех или иных свойств.

По материалам autotechnic.su


Протачивание тормозных дисков: за и против

Если на поверхности тормозного диска образовалась выработка в виде местного коробления, альтернативой к замене тормозных дисков будет протачивание тормозных дисков. Протачивание тормозных дисков проводится при не сильном износе диска по толщине. Это объясняется тем, что слишком тонкий тормозной диск очень плохо переносит тепловую нагрузку, что может привести к полному его разрушению. Поэтому перед тем, как протачивать тормозные диски проводят замеры толщины диска, степени коррозии и величины биения тормозного диска.

Предназначение и роль диагностической карты в правильной эксплуатации автотранспорта

Карта диагностики представляет собой официальный государственный документ, в котором отражается техническое состояние автотранспортного средства. Её наличие, с положительными результатами диагностики автомобиля, даёт право оформить страховку ОСАГО и ездить на этой автомашине по дорогам РФ, а также запредельных государств. Карта диагностики заменила в 2012 году талоны техосмотра, выдаваемые автовладельцам ранее.

obrazec-diagnosticheskoy-karty-600x400.jpg

Регистрационный номер диагностической карты заносится в базу данных ЕАИСТО

Единого оформления нет. Можно встретить как чёрно-белые бланки, так и цветные, с водяными знаками и без них. Главное, что должно быть — вся необходимая информационная база, включающая 65 пунктов проверки автомобилей. Встречаются карты диагностики, в которых количество этих пунктов равно 67.

Предшественники карт диагностики — талоны технического осмотра, которые нужно было всегда возить с собой. Обычно они были прикреплены к лобовому стеклу. Талоны были действительны до 1 августа 2015 года, после чего утратили свою юридическую силу.

talon-tehosmotra-obrazec-600x422.jpg

Талоны техосмотра не выдаются с 1 августа 2012 года

Номер диагностической карты и его расшифровка

Каждая карточка диагностики имеет свой индивидуальный регистрационный номер, который напечатан вверху на титульной странице. В картах старого образца, выдаваемых до 1 января 2017 года, присутствовали номера с разной разрядностью — 21 и 15 цифр. Те и другие заносились в базу ЕАИСТО (Единой автоматизированной информационной системы технических осмотров). С 01.01.2017 введена единая 15-значная кодировка. По этому коду можно многое узнать. Например, если напечатан регистрационный номер 012345671787654, его следует разделить на блоки 01234 – 567 – 17 – 87654. Каждый блок несёт определённую информацию:

  • 01234 — номер оператора в базе Российского союза автостраховщиков (РСА), осуществляющего техосмотр;
  • 567 — номер, присвоенный сотруднику, который провёл технический осмотр и выдал эту диагностическую карту;
  • 17 — год выдачи документа, без первых двух цифр;
  • 87654 — порядковый номер карты диагностики, присвоенный ей в 2017 году выдачи.

Номер каждой карточки является уникальным. По нему можно определить подлинность документа в базе ЕАИСТО, поэтому подделки исключены. Веб-сайт http://eaisto.pro/ предоставляет информацию о техническом осмотре по VIN-номеру конкретного автомобиля. На сайте отображается более широкая возможность поиска. Достаточно заполнить одно из предоставленных полей (VIN, номер кузова, рамы, регистрационный номер автомобиля или карты диагностики). Результаты поиска отобразятся на экране через несколько секунд.

stranica-proverki-portala-http-eaisto-info-600x264.jpg

Если в правом окне появились результаты проверки с подтверждениями номеров и датами — карта диагностики подлинная

Информационное содержание диагностической карты

Документ строгой отчётности содержит исчерпывающую информацию об операторе РСА, проводящем технический осмотр. Отображены все сведения о проверяемом транспортном средстве:

  • номер VIN;
  • регистрационный знак авто;
  • номер рамы;
  • номер кузова;
  • марка, модель и категория транспортного средства (ТС);
  • год выпуска ТС.

Ниже следует подробный перечень проверки основных систем автомобиля. Диагностируются по пунктам:

  • система тормозов;
  • рулевое управление;
  • внешнее освещение и световая сигнализация — фары и сигнальные фонари;
  • омыватели лобового стекла и стеклоочистители;
  • колёса и шины;
  • силовой агрегат и его основные системы;
  • остальные конструкции, влияющие на безопасность движения (клаксон, зеркала заднего вида, состояние стёкол и другие проверки).

Проверяется наличие аптечки, предупреждающего знака аварийной остановки, а также огнетушителя. Результаты проверок фиксируются на оборотной стороне карты диагностики. Описываются несоответствие определённых параметров, а также невыполненные требования к работоспособности конкретных узлов и систем. Даётся заключение, можно или нельзя ездить на ТС.

Дополнительно вносится информация об автотранспорте:

  • вид потребляемого топлива;
  • тип тормозной системы;
  • марка и тип резины (летняя, зимняя);
  • максимально разрешённая масса;
  • пробег.

Документ подписывает специалист, проводивший технический осмотр. Карта заверяется печатью организации — оператора РСА.

Давление в контурах тормозной системы легкого автомобиля

давление

Часто автолюбители не знают, какое давление является нормальным в тормозной системе автомобиля. Оно во всех участках одинаково и наибольшее значение составляет 180 бар. В спортивных машинах из-за больших нагрузок система возможно давление до 200 бар. Это давление создаётся в момент максимального нажатия на педаль тормоза, в обычных ситуациях давление не переходит отметку в 100 бар. Создать такое давление позволяет вакуумный усилитель.

давление 2

Регулятор тормозного усилия, гидравлический модулятор ABS

Между главным тормозным цилиндром и колес­ными тормозами расположен гидравлический модулятор ABS или системы динамической ста­билизации и, в зависимости от объема функций, регулятор тормозного усилия. Эти компоненты, ограничивая и адаптируя тормозное давление в основном на задней оси, обеспечивают адек­ватное распределение тормозных сил между пе­редней и задней осями. Эта функция, особенно у автомобилей с заметно разными режимами нагрузки, может выполняться в зависимости от нагрузки (автоматическое измерение тормоз­ных сил в зависимости от нагрузки).

Гидравлический модулятор изменяет тормозное давление во время торможения таким образом, чтобы предотвращать бло­кирование колес. В зависимости от режима управления эта операция выполняется не­сколькими электромагнитными клапанами и электрическим насосом. В тормозных си­стемах легковых автомобилей управление передней осью осуществляется отдельно, т.е. каждое колесо тормозится соответственно сцеплению с дорогой. Управление задними колесами осуществляется по принципу наи­меньшего сцепления, т.е. оба колеса тормо­зятся с усилием, соответствующим колесу с наименьшим сцеплением с дорогой (см. также «Антиблокировочная система и си­стема динамической стабилизации»).

Современные разработки

Если в привычных авто для работы вакуумного усилителя источником разряжения является область во впускном коллекторе, то на более современных автомобилях применяется вакуумный электронасос. Сейчас же автопроизводители начинают внедрять электромеханический тормозной модуль, который состоит из привычного нам суппорта, совмещенного с электромотором. Они являются более экономичными и надежными и в скором времени привычные нам гидравлические тормоза заменит именно эта система.

Автономное экстренное торможение

Современные тормозные системы в автомобилях 

Автономное экстренное торможение, это огромный шаг вперед. Можно сказать, что эта система опередила развитие всей автопромышленности в целом. То, что казалось фантастикой еще несколько лет назад, сегодня уже реальность. Эта система автоматически работает без всякого участия водителя останавливая автомобиль в случае опасности столкновения. В основном данная система сначала предупреждает водителя об опасности, а потом уже приступает к действию.

Современные тормозные системы в автомобилях 

Если водитель не отреагирует на предупреждение, то сразу сработает автономное экстренное торможение. 

Как правило, большинство автономных экстренных систем торможения работают на предотвращение столкновения передней частью автомашины. Но в течение нескольких лет должна получить свое распространение и другая система, которая будет автоматически останавливать машину в случае опасности столкновения при движении задним ходом. Также эта система будет настроена и на обнаружение пешеходов и велосипедистов.

Современные тормозные системы в автомобиляхПринцип работы данных систем очень разнообразен, как и их множественное число названий. На разных машинах имеется своя индивидуальная специфика работы подобных систем безопасности. Так, например, на автомобилях Volvo (система “City Safety”) и Ford (система “City Stop”) автономное экстренное торможение работает на скорости до 30 км/час, изначально предупреждая водителя об опасности столкновения и далее уже, если водитель не отреагировал, эта система автоматически останавливает машину для предотвращения столкновения.

В автомобилях Mercedes-Benz (система Active Brake Assist) и Nissan / Infiniti (Intelligent Brake Assist) системы автоматического торможения работают не только на низких скоростях, но и способны еще автоматически останавливать автомобиль на высоких скоростях. Системы вполне способны определять уровень опасности столкновения.

В случае опасности электроника в машине начинает предупреждать водителя об опасности столкновения, а далее начинает уже автоматически останавливать машину. В некоторых автомобилях марки Мерседес также доступна уже и система предупреждения столкновения при движении задним ходом. Если водитель не реагирует на предупреждение об опасности, то автомобиль автоматически останавливается.

Уход за тормозной системой автомобиля

Как один из наиболее важных узлов, тормозная система автомобиля требует постоянного внимания и ухода. Здесь буквально любая неисправность может привести к непредсказуемым последствиям на дороге.

Некоторые диагнозы можно поставить, исходя из характера поведения тормозной педали. Так увеличенный ход или «мягкая» педаль свидетельствуют, скорее всего, о попадании воздуха в систему гидропривода в результате утечки тормозной жидкости. Поэтому необходимо периодически контролировать уровень жидкости в бачке.

Её повышенный расход может быть следствием повреждения гидрошлангов и трубок, а также обыкновенного испарения со временем. Это приводит к попаданию в систему воздуха и отказу тормозов.

Пришедшие в негодность детали необходимо заменить, а систему придется прокачивать, выпуская воздух из каждого рабочего цилиндра на колесах и доливая жидкость. Процесс длительный и нудный.

Уход автомобиля при торможении в сторону говорит о возможном выходе из строя одного из рабочих цилиндров или чрезмерном износе накладок на каком-то определенном колесе. При загрязнении тормозных механизмов может возникать характерный шум при нажатии на педаль.

Все эти неисправности легко устраняются самостоятельно или обращением в сервисный центр. А чтобы свести к минимуму вышеописанные неприятности, берегите тормоза, чаще используйте торможение двигателем, особенно на крутых и затяжных спусках. Продолжительное по времени включение основной рабочей системы ведет к перегреву деталей и служит причиной различных поломок.

Электромеханическая тормозная система

Стояночная тормозная система — это неза­висимая тормозная система, которая должна удерживать автомобиль в неподвижном со­стоянии после полной остановки даже при отсутствии водителя в автомобиле. Требова­ния к эффектам торможения и удержания в неподвижном состоянии изложены в RREG 71/320 ЕСЕ R13H и §41 с. 5 и 9. Эффект удержания в неподвижном состоянии вычис­ляется согласно ЕСЕ R13H на уклоне у авто­мобиля с полной загрузкой. Угол уклона для автомобилей без прицепа составляет 18%. У автомобиля с прицепом эффект удержания в неподвижном состоянии должен достигаться с расторможенным прицепом на уклоне 12%.

Традиционные стояночные тормозные системы являются мускульными и работают чисто механически — это блокируемые руч­ные и педальные тормоза с кривошипно-ша­тунным механизмом. В электромеханических стояночных тормозных системах, также на­зываемых автоматическими стояночными тормозами, управляющее (рабочее) усилие создается электроприводом. Включение и управление осуществляются с помощью электрического выключателя. Электромеха­нический стояночный тормоз можно вклю­чать только при неподвижном состоянии автомобиля или на скорости до 10 км/ч. Это также должно быть возможно при выключен­ном зажигании и выключателе пуска. Если электрическая стояночная тормозная система задействуется на скорости более 10 км/ч, то сначала выполняется экстренное торможение системой динамической стабилизации.

Электрическая стояночная тормозная системаПрилагаемое усилие зависит от угла уклона, на котором стоит автомобиль. Для этой цели устанавливается датчик угла на­клона, в зависимости от системы, в ЭБУ элек­тромеханического стояночного тормоза или системы динамической стабилизации. Под­тягивание тормоза, обусловленное охлаж­дением механических компонентов тормоза, выполняется согласно расчетной температур­ной модели или после обнаружения движе­ния автомобиля.

Необходимо предусмотреть концепцию без­опасности для предотвращения случайной активации системы из-за электрической не­исправности или активации системы детьми. Кроме того, намеренная активация (аварий­ное торможение, необходимое только в слу­чае отказа устройства управления рабочей тормозной системы) электромеханического стояночного тормоза не должна приводить к критическим ситуациям. Если рабочий орган электромеханического стояночного тормоза осознанно задействуется на постоянной основе, то система динамической стабили­зации берет на себя функцию торможения автомобиля на скорости выше 10 км/ч. Это обеспечивает оптимально безопасное тор­можение даже в критических ситуациях. Электромеханический стояночный тормоз активируется только после падения скорости автомобиля ниже определенного порога. Си­стемы сообщаются между собой по каналу связи CAN.

Электрические стояночные тормозные си­стемы могут также включать в себя дополни­тельные функции, такие как автоматическое торможение (например, при открывании двери) или автоматическое отпускание тор­моза при трогании с места.

Электрические стояночные тормозные системы — это системы с дополнительным источником энергии и оснащаются устрой­ством аварийного отпускания. Электрическое управление должно быть реализовано таким образом, чтобы можно было предотвратить случайное торможение во время езды. Кроме того, должна обеспечиваться возможность активации системы даже при выключенном зажигании и пусковом выключателе, и си­стема может быть разблокирована только при включенном зажигании и пусковом вы­ключателе и одновременном нажатии на пе­даль тормоза.

Самодиагностика выявляет сбои и неис­правности и сигнализирует о них с помощью сигнализатора. На информационном дисплее водителя может также появляться текстовое сообщение. Диагностические коды в ЗУ неис­правностей можно считать с помощью диа­гностического тестера и очистить из памяти после устранения неисправностей.

Диагностические тестеры и соответствую­щее ПО могут потребоваться для работ по обслуживанию, например, при замене тор­мозных колодок.

Электромеханический стояночный тормоз с серводвигателем на тормозном суппорте

Электромеханический стояночный тормоз с серводвигателем состоит из следующих ком­понентов (рис. а, «Электрическая стояночная тормозная система» ):

  • Рабочий блок, ЭБУ, дисплей и сигнализи­рующие устройства;
  • Датчик угла наклона (может устанавли­ваться в системе динамической стабили­зации);
  • Плавающий суппорт с электродвигателем и многоступенчатым приводом.

В случае, когда суппорт оборудуется сер­водвигателем, сила для создания эффекта стояночного тормоза передается через мно­гоступенчатый редуктор и вал с резьбой. Он активируется электрическим выключателем (рабочий орган), отправляющим команды управления на ЭБУ в соответствии с кон­цепцией безопасности. ЭБУ, с учетом других граничных условий (например, уклона), акти­вирует электрические серводвигатели по про­водам через отдельные задающие каскады. Очень высокое передаточное число означает, что можно создать очень большие силы. Эти силы составляют приблизительно 15-20 кН и соответствуют силе, прилагаемой при созда­нии номинального гидравлического давления в гидравлической секции тормоза.

Электромеханический стояночный тормоз с тросами

В случае электромеханического стояночного тормоза с тросами в центрально размещае­мый блок — над задней осью, в пассажирском отсеке или в бампере — входят следующие компоненты (рис. Ь, «Электрическая стояночная тормозная система»  ):

  • Электропривод с редуктором;
  • Необходимые датчики, в зависимости от объема функций — например, силы, угла наклона, температуры и датчиков положения;
  • ЭБУ;
  • Тросовый механизм, при необходимости с устройством аварийного отпускания.

Эта система также активируется с помощью электрического выключателя, отправляю­щего управляющие команды на ЭБУ. ЭБУ активирует электрический серводвигатель или серводвигатели через задающий каскад. Прилагаемая сила зависит от угла уклона. Система автоматически подтягивает трос при остановке автомобиля либо после фазы охлаждения в соответствии с температурной моделью, либо после выявления перемеще­ния автомобиля.

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Уход за тормозной системой автомобиля

Тормозная система играет одну из основных ролей в обеспечении безопасности при движении на автомобиле.

Поэтому в обязательном порядке необходимо следить за ее состоянием и своевременно проводить техническое обслуживание.

Поскольку что в рабочем, что в стояночном тормозе составных элементов немного, то уход за всей системой не очень сложен.

В перечень работ по обслуживанию входит:

  • Контроль уровня рабочей жидкости в бачке;
  • Прокачка гидравлического привода для удаления воздуха из системы;
  • Замена изношенных колодок;
  • Проверка и регулировка ручника.

Читайте по теме: Как прокачать тормоза с АБС.

Помимо этого, также периодически следует осматривать состояние гидравлических магистралей, особенно их резиновых частей.

Что касается дисков и барабанов, то они тоже изнашиваются, но очень медленно, поэтому замене они подлежат очень редко, если, конечно, диск не покоробило от перепада температур.

Особенности ремонта элементов тормозной системы.

Следует отметить, что ремонт тормозов авто не является особо дорогостоящим, если он не оборудован дополнительно вспомогательными системами.

А вот если имеется та же АБС, да еще включающая в себя несколько систем (антиблокировка колес и система экстренного торможения) и на премиальном авто, к примеру, любой из современных Ауди, неисправности именно с этими системами могут обойтись очень дорого.

Какой бы тормозной системой не оснащался автомобиль, она требует постоянного контроля работоспособности, а также обслуживания и ремонта, поскольку это значительно влияет на безопасность движения.

Без определенных знаний все выше перечисленное сделать сложно, поэтому мы надеемся, что после прочтения данной статьи вы начали хоть немного разобраться в этих вопросах.

Для сигналов торможения рекомендуется применять специальные фонари заводского изготовления. Такие фонари имеются в розничной продаже. Лампы таких фонарей достаточно подключить параллельно основным сигналам тормозов и приводятся в действие от нажатия на педаль тормоза.

Запрещается устанавливать дополнительные сигналы торможения на грязи защитниках задних колес, так как при таком расположении водители грузовых автомобилей их не видят, а это противоречит правилам дорожного движения.

В соответствии с техническими услови­ями, эти тормозные жидкости обеспечивают устой­чивую и надежную работу тормозных систем. Технические требования к тор­мозным жидкостям определяются нор­мативными документами (стандарты SAE J 1703, FMVSS 116, ISO 4925). Эксплуатационные характеристики тор­мозных жидкостей содержатся в Феде­ральных требованиях безопасности ав­томобильного транспорта в США (FMVSS 116), а также в других нацио­нальных нормативных документах. Ос­новные свойства тормозных жидкостей, соответствующие требованиям мини­стерства транспорта США (DOT).

Как подобрать тормозную жидкость

Установившаяся температура кипения

Определяет величину сопротивления тормозной жидкости тепловым нагруз­кам. Теплота, образующаяся при работе тормозных гидроцилиндров колес (наи­большая температура во всей тормоз­ной системе) является критическим па­раметром безопасной работы тормозной системы. При температуре, превышаю­щей точку кипения, происходят интен­сивное образование воздушных пузырь­ков испаряющейся тормозной жидко­сти, что может привести к отказам в работе тормозной системы.

Влажностная точка кипения. Этот параметр характеризует устано­вившуюся температуру кипения тор­мозной жидкости в зависимости от аб­сорбируемой   влаги (приблизительно 3,5%). Вследствие попадания в тормоз­ную жидкость воды точка кипения сни­жается. Абсорбция влаги происходит, в основном, за счет диффузии воды через гибкие трубопроводы тормозной систе­мы. Вследствие этого гибкие соедини­тельные трубопроводы заменяются че­рез 1 -2 года. На рис. (см. с. 254) пока­зана зависимость снижения точки кипения двух типов тормозной жидко­сти от абсорбируемой в ней воды.

Вязкость. Чтобы обеспечить надежную работу тормозной системы в диапазоне тем­ператур от -40 до + 100еС, вязкость тормозной жидкости должна оставать­ся по возможности постоянной с мини­мальной зависимостью от температу­ры. Поддержание минимально воз­можной величины вязкости при очень низких температурах особенно акту­ально при использовании анти блоки­ровочной системы тормозов (ABS), си­стемы регулирования тягового усилия на колесах (TCS) и системы электрон­ного управления устойчивостью дви­жения (ESP).

Сжимаемость. Тормозная жидкость должна в процессе эксплуатации сохранять низкий уровень сжимаемости и иметь минимальную чувствительность к колебаниям темпе­ратуры.

Защита от коррозии. Стандарт FMVSS 116 регламентирует требования к тормозной жидкости по защите от коррозии: она не должна ока­зывать коррозирующего воздействия на металлические детали тормозной сис­темы. Защитные антикоррозийные свойства обеспечиваются внесением в тормозную жидкость специальных при­садок.

Набухание эластомеров. Допускаемая величина набухания эластомеров под воздействием тормозной жидкости не должна превышать 10%. При большей величине набухания прочностные свойства эластомеров существенно снижаются, уже незначительное загрязнение минеральным маслом, растворителя) тормозной жидкости на гликолей основе может привести к разрушению резиновых изделий (таких, как уплотнения) и выходу из строя всей тормозной системы.

Нужно ли использовать специальные смазки тормозных систем и их компонентов? Какой это может дать эффект?

Металлосодержащие смазки (алюминиевые, медные и др.) использовать можно и даже нужно, но только на тех поверхностях, где в процессе эксплуатации между разными металлами не сможет возникнуть электрохимическая реакция. Графитовая смазка имеет существенный недостаток – низкую эффективность. Поэтому многие производители предлагают специальные смазки для механизмов тормозной системы, они не содержат металлов и кислот.

Металлосодержащие смазки (алюминиевые, медные и др.) использовать можно на тех поверхностях, где в процессе эксплуатации между разными металлами не сможет возникнуть электрохимическая реакция, многие производители предлагают специальные смазки для механизмов тормозной системы, которые не содержат металлов и кислот

На прощание

Каждый нюанс, имеющий отношение к эффективности работы тормозов, заслуживает пристального внимания. Обращайте внимание на любое изменение привычного поведения машины во время торможения, своевременно выполняйте все сервисные манипуляции, внимательно относитесь к выбору запчастей для замены. И тогда большинства неприятных ситуаций, связанных с тормозами, можно будет избежать.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...