Чем отличаются асинхронный двигатель от коллекторного

Содержание
  1. Особенности коллекторного устройства
  2. Чем отличается коллекторный двигатель от асинхронного
  3. Коллекторные vs асинхронные двигатели
  4. Ответ
  5. Главные проблемы стиральных машин
  6. Асинхронный двигатель — что это такое, как устроен и где используется?
  7. Определение и немного истории
  8. Минусы коллекторных моторов
  9. Асинхронные моторы
  10. Конструкция
  11. Схема соединения обмоток статора

Почему асинхронные двигатели столь популярны. Чем компенсировать их недостатки.

Особенности коллекторного устройства

Двигатели такого типа относятся к механизмам постоянного тока. Поэтому они встречаются в большинстве случаев в бытовых приборах, таких как стиральные машины. Устройство и принцип работы коллекторного мотора можно описать несколькими пунктами:

  1. Движущей частью двигателя является якорь, который состоит из множества пластинок. Он окружен специальными магнитами. Ток подается на двигатель с помощью щеток.
  2. Чтобы ротор постоянно вращался, нужно периодически менять направление тока. Поэтому щетки подключаются к пластинам, которые разделены между собой. Количество сегментов зависит от числа движущихся рамок.

Благодаря такой конструкции двигатель и называют коллекторным. Недостатком конструкции можно считать наличие щеток, которые со временем могут повреждаться или стираться.

Асинхронный двигатель

Чем отличается коллекторный двигатель от асинхронного

Электричество сегодня является одним из самых востребованных источников энергии. Для его использования применяют специальные механизмы, которые способны преобразовывать ток во вращательную силу. 1326686-e1521697599903.jpg

Одними из самых популярных систем являются коллекторные двигатели. Встречаются они повсеместно, так как отличаются простотой и функциональностью.

Коллекторные vs асинхронные двигатели

Вопрос – коллекторный двигатель или асинхронный – решаем первоочередно. Процесс несложный. Коллектором называется барабан, разделенный медными секциями, формой близкой прямоугольной, сделанными из меди. Формирует токосъемник, в коллекторных двигателях ротор всегда питается электрическим током. Постоянным, переменным – поле создается приложенным напряжением.

Коллекторный двигатель

Коллекторный двигатель

Коллекторный двигатель содержит минимум две щетки. Трехфазные встретим редко. Сведения о таких агрегатах описаны литературой середины прошлого века. Применялись коллекторные трехфазные двигатели, регулируя скорость вращения вала в широких пределах. Мотор указанного типа снабжен щетками, медным барабаном, разделенным секциями. Пропустить признак и невооруженным глазом затруднительно. Примеры коллекторных двигателей:

  1. Пылесос, стиральная машина.
  2. Болгарка, дрель, электрический ручной инструмент.

Коллекторные двигатели широко используются, обеспечивая сравнительно простой реверс, реализуемый переменой коммутации обмоток. Скорость регулируется изменением угла отсечки питающего напряжения, либо амплитуды. К общим недостаткам коллекторных двигателей относятся:

  • Шумность. Трение щетками барабана неспособно происходить бесшумно. При переходе секцией идет искрение. Эффект вызывает помехи радиочастотного диапазона, издается сонм посторонних звуков. Коллекторные двигатели сравнительно шумные. Потрудитесь вспомнить пылесос. Стиральная машина, выполняя режим стирки работает не так громко? Низкие обороты коллекторных двигателей хороши.
  • Необходимость обслуживания обуславливается наличием трущихся деталей. Токосъемник чаще загрязнен графитом. Попросту недопустимо, может замкнуть соседние секции. Грязь повышает уровень шума, прочие негативные эффекты.

Все хорошо в меру. Коллекторные двигатели позволят получить заданную мощность (крутящий момент), на старте, после разгона. Сравнительно просто регулировать обороты. Названа причина увлечения бытовой техники коллекторными разновидностями, асинхронные двигатели выступают сердцем оборудования, обладающего повышенными требованиями к уровню звукового давления. Вентиляторы, вытяжки. Серьезные нагрузки потребуют внесения серьезных конструктивных изменений. Повышаются стоимость, размеры, сложность, делая невыгодным изготовление.

Коллекторный двигатель отличается наличием… коллектора. Даже если нельзя увидеть снаружи (скрыт кожухом), заметим непременные графитовые щетки, прижатые пружинками. Деталь требует замены со временем, поможет коллекторный двигатель от асинхронного отличить.

Ответ

Дело в том, что двигатель с щетками — это коллекторный двигатель, а двигатель без щеток — бесколлекторный. Для решения разных задач подойдет свой тип двигателя — где-то лучше подойдет коллекторный, а где-то можно установить только бесколлекторный.

Коллекторный двигатель

Двигатель коллекторный имеет, как правило, всего два провода питания, он прост в управлении, достаточно регулировать постоянное или переменное напряжение питания и обороты станут соответственно меняться. Управлять коллекторным двигателем можно даже при помощи нехитрого диммера. Главное достоинство коллекторного двигателя — высокие обороты (десятки тысяч в минуту) при высоком крутящем моменте.

Принцип работы коллекторного двигателя очень прост. По сути, ротор его представляет собой набор медных рамок в магнитопроводе, которые поочередно коммутируются к источнику питания на коллекторно-щеточном узле. Статор может быть как из постоянных магнитов, так и с обмоткой, питаемой от того же источника, что и ротор, или от отдельного источника, а иногда статор и ротор включены в единую последовательную цепь (как например двигатели стиральных машинок-автоматов).

На каждую из секций обмотки ротора, через коллекторно-щеточный узел, поочередно, в процессе вращения ротора, подается электрический ток, в результате ротор перемагничивается, приобретая четко выраженные северный и южный магнитные полюсы, благодаря которым и происходит вращение ротора внутри статора (полюсы ротора выталкиваются полюсами статора, затем ротор дальше перемагничивается и вновь выталкивается). Поскольку ротор каждый раз коммутируется к источнику питания очередной секцией, вращение не останавливается, пока на коллектор подается питание.

Основной недостаток коллекторного двигателя

Обороты коллекторного двигателя очень удобно регулировать, но когда они достаточно высоки, щетки дают о себе знать. Поскольку щетки все время плотно прилегают к коллектору, на высоких оборотах они быстро изнашиваются, со временем так или иначе засоряются, и в конце концов начинают искрить.

Износ щеток, и вообще коллекторно-щеточного узла, ведет к снижению эффективности коллекторного двигателя. Таким образом, сам коллекторно-щеточный узел — это и есть главный недостаток коллекторных двигателей. Сегодня от коллекторных двигателей стараются отказываться в пользу бесщеточных шаговых.

Бесколлекторный (бесщеточный) двигатель

У бесколлекторного двигателя нет ни коллектора, ни щеток. Простейший пример бесколлекторного двигателя — асинхронный трехфазный двигатель с ротором типа «беличья клетка». Еще один пример бесколлекторного двигателя — более современный — шаговый двигатель с магнитным ротором. Обмотки статора бесколлекторного двигателя сами перемагничиваются так, чтобы ротор все время разворачивался и непрерывно таким образом вращался.

Чаще всего современные бесколлекторные двигатели оснащаются датчиком положения ротора, по сигналам с которого работает регулятор скорости вращения двигателя. Сигнал с датчика положения ротора передается на процессор более 100 раз в секунду, в результате получается точное позиционирование ротора и высокий крутящий момент. Бывают, конечно, бесколлекторные двигатели и без датчика положения ротора, яркий пример — тот же асинхронный трехфазный мотор. Моторы без датчика положения стоят дешевле чем с датчиком.

Достоинства бесколлекторных двигателей

Поскольку ресурс подшипников ротора крайне велик, можно сказать, что в бесколлекторном двигателе практически отсутствуют изнашиваемые со временем детали, и он вообще не требует обслуживания в процессе эксплуатации. Здесь сведено к минимуму трение, отсутствует проблема перегрева коллектора, в целом надежность и эффективность бесколлекторных двигателей очень высоки.

Нет искрящих щеток, датчик положения ротора поможет сделать управление точным, — недостатков практически нет, одни достоинства. Разве что цена качественных шаговых двигателей выше чем у коллекторных (плюс драйвер), но это ничто по сравнению с регулярной заменой пружин, щеток и коллекторов у коллекторных двигателе

Вначале выясним тип двигателя. Не всегда решим вопрос однозначно. Внешний вид мало говорит, шильдик старого двигателя способен не соответствовать реальной начинке агрегата. Предлагаем кратко рассмотреть, какие асинхронные и коллекторные двигатели выпускает промышленность. Расскажем отличия эксплуатации, ключевых свойств, внешних и внутренних. Обсудим подключение однофазного двигателя к сети переменного тока.

Главные проблемы стиральных машин

Если Вы интересовались этим вопросом в Интернете, то наверняка видели подобные жалобы: «Вот, третий год эксплуатации, и я слышу скрежет во время стирки. Говорят, что подшипник барабана барахлит. Ремонтировать? Проще новую купить».

И такие отзывы – не редкость. Реклама же продолжает кормить обещаниями, из-за чего можно ненароком переплатить за бренд, что тоже неприятно.

Итак, окиньте взглядом ассортимент стиральных машин и постарайтесь не обольщаться в первые секунды маркетинговыми фишками. Знаем мы компании, которые заманивают сенсорными экранами и футуристическими формами. Но у Вас цель – выбрать долговечную стиралку. Это как женитьба – чтобы раз, и на всю жизнь. Поэтому спокойно диагностируем будущую избранницу. Важен мотор и только мотор – без преувеличения сердце стиральной машины.

Моторы в стиральных машинах: какой тип лучше?

Ассорти моторов

Асинхронный двигатель — что это такое, как устроен и где используется?

Сегодня есть множество типов электрических двигателей: коллекторные двигатели постоянного тока и универсальные, двигатели переменного тока синхронные и асинхронные, бесщеточные двигатели постоянного тока и синхронные двигатели с постоянными магнитами, шаговые двигатели и сервоприводы и т.д. Но самым распространенным на производстве был, есть и будет – асинхронный электродвигатель с короткозамкнутым ротором. В этой статье мы поговорим о том, что это такое и в чем заключаются его особенности.

Определение и немного истории

Автором асинхронного двигателя считают Михаила Осиповича Доливо-Добровольского, который в 1889 году получил патент на двигатель с ротором типа «Беличья клетка», а в 1890 году на двигатель с фазным ротором, которые без особых изменений в конструкции используются и сегодня. А первые исследования и наработки в этом направлении были проведены в 1888 Галилео Феррарисом и Николой Тесла независимо друг от друга.

Главным отличием разработки Доливо-Добровольского от разработок Теслы было использование трёхфазной, а не двухфазной конструкции статора. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. Там представили три трёхфазных асинхронных электродвигателя, самый мощный из которых был на 1.5 кВт. Конструкция этих машин оказалась настолько удачно, что не пережила весомых изменений до наших дней.

Определение асинхронной машины звучит следующим образом:

Асинхронной называется электрическая машина переменного тока, в которой частота вращения ротора не равна частоте вращения магнитного поля, создаваемого обмотками статора.

Минусы коллекторных моторов

Сами по себе коллекторные моторы неплохо справляются со своей работой, но это лишь до того момента пока не возникает необходимость получить от них на выходе максимально высокие обороты. Все дело в тех самых щетках, о которых упоминалось выше. Так как они всегда находятся в плотном контакте с коллектором, то в результате высоких оборотов в месте их соприкосновения возникает трение, которое в дальнейшем вызовет скорый износ обоих и в последствии приведёт к потере эффективной мощности эл. двигателя. Это самый весомый минус таких моторов, который сводит на нет все его положительные качества.

Асинхронные моторы

Двигатели такого типа появились довольно давно и очень часто применяются в промышленности. Это обусловлено тем, что здесь используют трехфазные электрические сети. Принцип работы такой системы можно описать несколькими последовательными шагами:

  1. Статор мотора представляет собой обмотку из медной проволоки. Она может быть двух- или трехфазной. При подаче на него тока появляется магнитное поле.
  2. Ротор же представляет собой металлический цилиндр, который способен вращаться на подшипниках. Когда возбуждается магнитное поле в обмотке статора, это продуцирует аналогичное явление и в роторе. По-простому цилиндр просто старается догнать поле и это приводит к появлению вращения. Обусловлено это небольшим смещением фаз, которое может быть разным в зависимости от типа мотора.

Смотрите также:

Виды вилочных погрузчиков

Как работают камеры видеонаблюдения http://euroelectrica.ru/kak-rabotayut-kameryi-videonablyudeniya/.

Интересное по теме: Как подключить газовый котел к системе отопления

Советы в статье «Приточные установки от магазина «Вент-заводы».» здесь.

Отличительной особенностью асинхронного двигателя является отсутствие скользящего контакта (в коллекторном моторе это щетки и сам коллектор). Поэтому такие механизмы намного надежней, чем конструкции на основе коллекторов. Обслуживать асинхронные модификации нужно не так часто. Коллекторный двигатель невозможно сделать с большой мощностью, что ограничивает среду их применения.

Конструкция

Конструкция асинхронного двигателя, пожалуй, самая простая среди его аналогов. Он состоит из ротора и статора. Зачастую на статоре расположена трёхфазная обмотка, исключение составляют двигатели, предназначенные для работы в однофазной сети с двухфазной обмоткой или с рабочей и пусковой обмоткой. Статор состоит из металлического корпуса и сердечника с обмотками (собственно их называют обмоткой статора).

Так как двигатель питается переменным током, возникает проблема, связанная с потерями на блуждающие токи (т.н. токи Фуко), для этого сердечник статора набирают из тонких пластин. Стальные пластины для предотвращения контакта друг с другом изолируются окалиной, скрепляются лаком. Ток, протекающий в обмотках статора, называют током статора.

Корпус статора закрывается с двух сторон подшипниковыми щитами, в них, соответственно, устанавливаются подшипники скольжения или качения, в зависимости от мощности и размеров машины. Подшипники закрываются крышками, это нужно для их смазки, обычно используют пластичную смазку, как литол, солидол и подобные.

Реже, в больших и мощных электрических машинах могут использоваться опорные подшипники скольжения с циркуляционной системой смазки (жидкостная смазка). В них маслонасос закачивает масло, в рабочем режиме ротор таких машин скользит по тонкой масляной плёнке, подобно тому, как это происходит во вкладышах на ДВС.

По конструкции корпуса и типу крепления различают двигатели на лампах или с фланцевым креплением, также бывают с комбинированным типом крепления — с лапами и фланцем.

В зависимости от типа двигателя вал из него может выходить как с одной, так и с обеих сторон. К нему присоединяется исполнительный механизм, для этого конец выполняется конической или цилиндрической формы или с проточкой для установки шпонки и соединения с исполнительным механизмом.

В большинстве электродвигателей используется принудительное воздушное охлаждения. Для этого на корпусе продольно располагаются рёбра, а на другом конце вала устанавливается крыльчатка вентилятора охлаждения. Во время работы двигателя она вращается и прогоняет воздух вдоль рёбер, забирая тепло от статора.

Схема соединения обмоток статора

Так как в статоре односкоростного асинхронного двигателя расположено три обмотки, то для подключения к трёхфазной сети их необходимо как-то соединить. Как и в любой трёхфазной цепи различают две схемы соединения:

1. «Звезда». Концы обмоток соединяются вместе, напряжение подводится к их началам.

2. «Треугольник». Начало следующей обмотки соединяется с концом предыдущей.

Концы обмоток выводятся в клеммную коробку, которую еще называют «брно» или «борно» (мне не удалось найти правильного названия, а в словаре указаны оба варианта). В зависимости от типа и конструкции двигателя в «борно» может быть выведено 3 или 6 проводов. Если выведено 3 провода – то обмотки соединены «с завода» по определенной схеме, а если 6, то вы можете выбрать схему подключения исходя из напряжения питающей сети.

В зависимости от года производства и производителя электродвигателя могут применяться такие обозначения выводов обмоток, как приведены в таблице ниже.

Концы обмоток на клеммнике расположены таким образом, чтобы с помощью одного комплекта из трёх перемычек можно было соединить обмотки по нужной схеме. Для соединения по схеме звезды перемычки устанавливают в ряд на концы обмоток, а для треугольника – параллельно друг другу соединяя «верхние» и «нижние» клеммы. Для этого начала и концы обмоток смещены друг относительно друга, что вы увидите на следующей иллюстрации.

Комментариев нет, будьте первым кто его оставит