Схема соединения “Зигзаг”

При изготовлении трёхфазных трансформаторов, основные виды соединений осуществляются по схемам: звезда и треугольник.
Но порой в более сложных трансформаторах, обмотки приходится соединять по схеме – зигзаг.
Здесь на отдельной фазе, обмотка наматывается двумя одинаковыми частями, находящихся на разных трансформаторных стержнях. Соединяют эти обмотки, последовательно.
Используют соединение схемой

Рассмотрим вариант работы однофазного трансформатора, питающего трёх проводную линию:

Вторичная обмотка имеет четыре различные составляющие. На одном стержне соединяют последовательно две обмотки, на другом стержне такое же соединение производят на двух других обмотках. Получается что, каждая половина обмотки состоит из двух частей.

При неблагоприятном варианте, когда нагрузка присутствует только на одной части вторичной обмотки, соединение в зигзаг, даст возможность уравновесить нагрузку, избегая нарушения магнитного поля.

Применяют и такой метод для одинаковой нагрузки электросетей как подключение: зигзаг – звезда.

Подключение зигзагом: особенность использования, преимущества и недостатки

Здесь звездой подключаются первичные обмотки, а вторичные имеют соединение: первая половина обмотки соединяется зигзагом, вторая часть вторичной обмотки, соединена в звезду.

При этом варианте соединения, можно получить несколько видов напряжения.

Обычные промышленные и бытовые величины – 380, 220 и 120 вольт.

Трансформаторы с соединением зигзаг выпускаются для сложных электросетей, например в сельском хозяйстве, где специфика всей системы намного усложнена, чем на обычных промышленных предприятиях.

Изготовление таких трансформаторов сложнее и дороже, чем с соединением звездой. Себестоимость выше из-за большего количества витков на обмотках.

Увеличение витков необходимо для получения одинакового значения Э. Д. С. обмоток. При математических подсчётах количества витков сходятся на 15 процентном увеличении материала, чем при соединении в звезду.

Из-за этих недостатков соединение звезда-зигзаг, стараются уйти и применяют довольно редко, в основном, где нельзя обойтись без равномерного распределения несимметричной нагрузки.

________________________________________________________________________________

Также ПОДКЛЮЧЕНИЕ ШЛЕЙФОМ будет интересно к ознакомлению.

Подписывайтесь, ставьте лайк и пишите ваше мнение в комментариях.

Соединение в зигзаг однофазного трансформатора

рассмотрим на двух типичных примерах.

1. Трансформатор питает трехпроводную сеть, как показано на рисунке 1, а. Вторичная обмотка II разделена на четыре равные части 3, 4, 5 и 6. Последовательно соединены части обмотки: 3 на левом стержне и 6 – на правом стержне, 4 – на правом стержне и 5 – на левом стержне. Таким образом, каждая половина обмотки состоит из двух частей: одна из них – на левом, а другая – на правом стержне.

Соединение в зигзаг однофазного трансформатора

Рисунок 1. Примеры соединения в зигзаг однофазных трансформаторов.

Допустим самый неблагоприятный случай: нагружена только одна половина вторичной обмотки. Точками на рисунке 1, а показаны начала частей обмотки, стрелками – направления токов. Нетрудно видеть, что ток нагрузки в равной степени влияет на обе половины 1 и 2 первичной обмотки I. Действительно, четверть вторичной обмотки 5 действует на половину 1 первичной обмотки так же, как четверть обмотки 4 действует на половину обмотки 2. Поэтому магнитное равновесие почти не нарушается.

2. Трансформатор питает двухполупериодный выпрямитель по схеме с нулевым выводом. В этом случае вторичные обмотки трансформатора нужно соединить в зигзаг, но, чтобы понять, зачем нужно такое соединение, рассмотрим рисунок 1, б.

На нем показан однофазный трансформатор с двумя вторичными обмотками, между которыми выведена средняя (нулевая) точка 0. Она является отрицательным полюсом выпрямителя. В каждой вторичной обмотке за положительное направление принимается направление от нулевой точки к их наружным концам a и b, что соответственно совпадает с проводящим направлением вентилей В1 и В2. Направление тока в положительный полупериод показано зелеными стрелками, в отрицательный – желтыми. Неблагоприятная особенность этой схемы состоит в том, что по вторичным обмоткам трансформатора проходит ток одного направления, то есть ток, содержащий не только переменную, но и постоянную составляющие. Постоянная составляющая насыщает магнитопровод, а насыщение, как объяснено в статье “Понятие о магнитном равновесии трансформатора”, нарушает работу трансформатора, увеличивает намагничивающий ток и порождает высшие гармоники.

Можно, однако, так соединить обмотки трансформатора, что и постоянная, и переменная составляющие будут полностью компенсироваться. Такое соединение показано на рисунке 1, в. Рассматривая этот рисунок, нетрудно видеть, что первичная обмотка I трансформатора состоит из двух частей 1 и 2, расположенных на разных стержнях и соединенных параллельно. Вторичная обмотка II соединена в зигзаг. В положительный полупериод (зеленые стрелки) работает половина вторичной обмотки, причем части 4 (вторичная обмотка) и 2 (первичная обмотка), расположенные на правом стержне, взаимодействуют так же, как части 1 и 5 на левом стержне. В отрицательный полупериод (желтые стрелки) работает вторая половина вторичной обмотки: взаимодействия частей 1 и 3 на левом стержне и 2 и 6 на правом – одинаковы.

Соединение обмоток трансформатора в звезду

Соединение обмотки в звезду

При соединении в звезду действуют следующие соотношения –

  • линейные токи равны фазным,
  • линейные напряжения больше фазных в √3 раз

Возможно множество вариантов соединения обмоток трансформатора в звезду, некоторые из них приведены на рисунке ниже. И, как говорится, не все из них одинаково полезны, а точнее, для разных случаев необходима разная схема соединений.

Следует отметить, что в звезду можно соединить как один трехфазный трансформатор, так и три однофазных. На рисунке обозначаются:

  • А, В, С – начала обмоток высшего напряжения
  • Х, Y, Z – окончания обмоток высшего напряжения
  • a, b, c – начала обмоток низкого напряжения
  • x, y, z – окончания обмоток низкого напряжения

Преимущества трансформатора Zig-Zag

Соединение Δ -zigzag обеспечивает те же преимущества, что и соединение Δ-Y.

Меньше затрат на заземление Цель

Это, как правило, наименее дорогостоящий, чем YD и Scott Transformer.

Подавление третьей гармоники

Зигзагообразная связь в энергетических системах для улавливания тройных гармонических (3-го, 9-го, 15-го и т. Д.) Токов. Здесь мы устанавливаем зигзагообразные узлы вблизи нагрузок, которые производят большие тройные гармонические токи. Обмотки ловят гармонические токи и препятствуют их перемещению вверх по течению, где они могут создавать нежелательные эффекты.

Изоляция заземления

Если нам нужна нейтраль для заземления или для подачи однофазной линии на нейтральные нагрузки при работе с 3-проводной, незаземленной системой питания, может быть лучшим решением для зигзагообразного соединения. Благодаря своему составу зигзагообразный трансформатор более эффективен для целей заземления, поскольку он имеет меньше внутреннего сопротивления обмотки, идущего на землю, чем при использовании трансформатора типа Star.

Без смещения фазы

Нет смещения фазового угла между первичной и вторичной цепями с этим соединением; поэтому Δ-зигзагообразное соединение можно использовать таким же образом, как и YY и Δ Δ, без введения каких-либо фазовых сдвигов в цепях.

Понятие группы соединение обмоток трехфазного трансформатора

В трехфазных сетях используется два вида соединений: звезда и треугольник. При изготовлении  конструкций может показаться, что существует всего четыре вида расположения обмоток:

  1. Звезда-звезда.
  2. Звезда-треугольник.
  3. Треугольник-звезда.
  4. Треугольник-треугольник.

обмотки трехфазного трансформатора

На деле все обстоит сложнее, поскольку в каждом виде соединений (звезде или треугольники) части обмоток могут быть соединены по-разному. В качестве примера можно привести обычных двухобмоточный трансформатор. Если у такого устройства совпадают начала и концы обмоток, то сдвиг фаз будет равен 0. Разворот одной из обмоток даст сдвиг фаз 180.

Также встречаются z-образные соединения обмоток (зигзаг). В таких конструкциях каждая из обмоток состоит из двух частей, расположенных на различных стержнях магнитопровода трансформатора.

Трехфазная сеть характеризуется сдвигом фаз одна относительно другой на 120. Поэтому всего насчитывается 12 групп соединения. Каждая группа характеризуется определенным сдвигом одноименных фаз на входе и выходе трансформатора.

Магнитные системы трехфазных трансформаторов

Схемы соединения обмоток трансформатора Звезда Треугольник Зигзаг. Что это такое.

file1_html_m6247d0b3.png

Соединение обмоток электродвигателя играет важнейшую роль в его правильном функционировании. Подключая **Силовой трансформатор** к системе его запуска, необходимо, в первую очередь, уметь правильно соединить все его обмотки.

Соединение обмоток электродвигателя играет важнейшую роль в его правильном функционировании. Подключая **Силовой трансформатор** к системе его запуска, необходимо, в первую очередь, уметь правильно соединить все его обмотки. Дело в следующем: каждый асинхронный двигатель имеет своё индивидуальное номинальное напряжение питания. Исходя из этого выбирается и соответствующая обмотка, которая является индивидуальной к каждому двигателю.

Основные виды обмоток

Существует довольно большое количество видов обмоток. **Схема соединений распределительного трансформатора** однофазного вида предполагает применение таких видов:

1) треугольник (Δ-соединение) — три фазные обмотки соединяются последовательно в кольцо или треугольник;

2) звезда (Y-соединение) — это соединение в виде звезды, которая соединяет все три обмотки их концами с одной стороны в одной нейтральной точке, называемой звездой;

3) зигзаг — (Z-соединение) — это соединение зигзагом.

Среди многих других факторов, на выбор соединений влияет мощность, которой обладает **Распределительный трансформатор**. Например, для наиболее высоких напряжений часто выбирается Y-соединение. Он лучше всего защищает прибор от перенапряжения, а также напрямую заземляет его. При соединении треугольником и звездой чаще всего комбинируют оба соединения, каждое из которых присутствует на трансформаторе по его разным сторонам.

Особенно это актуально в случаях, когда одну сторону планируют для зарядки. Обычно эту сторону и обматывают звездой. А треугольник в таких случаях даёт баланс между ампером и витком для оптимального уровня полного сопротивления нулевой последовательности. Обмотка треугольником не пропускает ток в сердечник.

Выбор обмоток с учётом напряжения оборудования

Все асинхронные электродвигатели обладают своим номинальным напряжением питания. Поэтому соединения **Звезда**, **Треугольник**, или же их комбинации **Звезда — Звезда**, **Звезда — Треугольник** — выполняют не только соединительную функцию, но определяют напряжение питания.

Известно, что напряжение обмоток, которые соединяются в звезду, в три раза больше, чем напряжение обмоток, которые соединяют в треугольник. Следовательно, применять каждый вид нужно только там, где это оптимально. Тогда правильные соединения обмоток смогут гарантировать правильную работу двигателя в течение многих лет, препятствовать его перегреву, изнашиванию.

Например, если электродвигатель нужно подключить в сеть с напряжением 380 В, с его номиналомUном = 220/380 В все обмотки соединяются в звезду. Если номинал двигателя Uном равняется 380/660 В, то обмотки заключаются в треугольник.

Выведение обмоток и их маркировка

Надо отметить, что **Группа соединений силового трансформатора** типов Δ и Y — это важнейшая составляющая не только работы всего двигателя. Важнейшую роль здесь играет и обеспечение оптимального взаимодействия трансформатора с другим оборудованием. Правильное выведение свободных обмоток — залог такого успешного «сотрудничества». Выводы обмоток выводятся на клеммник в таком виде, чтобы соединение схемы было предельно простым. Соединение концов в звезду, предполагает, что при этом перемычки устанавливаются по горизонтали в один ряд, их соединяют три клеммы. Соединяя обмотки в треугольник, следует перемычки устанавливать вертикально, соединяя три пары контактов.

Неопытные мастера могут столкнуться с проблемой маркировки обмоток. Она обязательна, так как при выводе концы могут перепутаться. Особенно это актуально при схемах **Звезда** и **Треугольник**. Например, при обмотке стартора делается 3 обмотки, каждая имеет 2 вывода, всего 6.

Сначала нужно определить при помощи омметра выводы для каждой катушки. Ставим обозначения: для первой катушки это С1-С4, для второй С2-С5, для третьей С3-С6. Так, С1, С2, С3 — это начала катушек, всё остальное — концы. Далее соединяем концы второй и третьей катушек с их началами, подводим переменный ток 220 В.

Измеряем наличие напряжения в 3-й катушке. Если его нет, катушки соединены встречно, а значит, С1-С4, С2-С5 подписаны верно. Если напряжение обнаружено, меняем маркировку 1-й или 2-й катушки. Проверяем, если третья обмотка обесточена, 1 и 2 являются правильными. Маркировка 3 катушки определяется так: конец С6 соединяем с любым другим — С4, С5. Если на не подключенной обмотке есть напряжение, меняем надпись на 3-й обмотке. Если напряжения нет, то всё правильно.

Для того, чтобы правильно сделать соединение обмоток, необходимо как можно тщательнее изучить все нюансы по данной тематике. На самом деле, в этом нет ничего сложного. Если же вы испытываете трудности в том, чтобы со всем этим самостоятельно разобраться, лучше доверить такую работу опытным специалистам, ведь с электричеством не шутят.

Источник

Соединение в зигзаг – звезду трехфазного трансформатора

Первичные обмотки трансформаторов соединены в звезду, вторичные в зигзаг – звезду (рисунок 2, а). Для этого вторичная обмотка каждой фазы составляется из двух половин: одна половина расположена на одном стержне, другая – на другом. Конец, например x1, соединен с концом (а не с началом!) y2 и так далее. Начала a2, b2 и c2 соединены и образуют нейтраль. К началам a1, b1, c1 присоединяют линейные провода вторичной сети. При таком соединении электродвижущие силы (э. д. с.) обмоток, расположенных на разных стержнях, сдвинуты на 120°; векторная диаграмма э. д. с. вторичной обмотки приведена на рисунке 2, б.

Эта векторная диаграмма построена следующим способом. Предположим, что соединены концы x1, y1, c1 и получена диаграмма (рисунок 2, в). Затем предположено, что соединены начала a2, b2, c2. Это соответствует диаграмме на рисунке 2, г, повернутой относительно диаграммы на рисунке 2, в на 180°. Наконец, в соответствии со схемой на рисунке 2, а произведено геометрическое сложение векторов, которые изображены на рисунках 1, в и г.

Схема соединения Зигзаг

Рисунок 2. Соединение в зигзаг – звезду трехфазного трансформатора.
Буквами a1, b1, c1, a2, b2, c2 обозначены начала вторичных обмоток, буквами x1, y1, z1, x2, y2, z2 – их концы Электродвижущие силы вторичных обмоток: e’1, e’2, e’3, e’’1, e’’2, e’’3, линейные напряжения E1, E2, E3

Соединение в зигзаг – звезду дороже соединения в звезду, так как требует большего числа витков. Действительно, при последовательном соединении двух половин обмотки, расположенной на одном стержне, их э. д. с. складываются алгебраически, то есть в данном случае удваиваются. При соединении обмоток, расположенных на разных стержнях, э. д. с. складываются геометрически под углом 120° и дают э. д. с, √3 раз больше одной из них. Следовательно, чтобы получить э. д. с. той же величины при соединении в зигзаг – звезду, нужно на 15% больше витков, чем при соединении в звезду, так как 2 / 1,73 = 1,15.

При соединении в зигзаг – звезду можно получить три напряжения, например 400, 230 и 133 В. Указанные величины относятся к холостому ходу. Под нагрузкой у потребителей напряжения будут ниже, приближаясь к номинальным напряжениям сети 380, 220 и 127 В.

Источник: Каминский Е. А., “Звезда, треугольник, зигзаг” – 4-е издание, переработанное – Москва: Энергия, 1977 – 104с.

Таблица групп соединений

В таблице ниже представлены обозначения групп соединения и чередование фаз низкой и высокой сторон.

Группа соединения Обозначение Чередование фаз
Y/Y-0 C, B, A
c, b, a
∆/∆-0 C, B, A
c, b, a
1 Y/∆-1 C, B, A
c, b, a
∆/Y-1 C, B, A
c, b, a
2 Y/Y-2 C, B, A
c, b, a
∆/∆-2 C, B, A
а, c, b
3 Y/∆-3 C, B, A
 b, a, с
∆/Y-3 C, B, A
 b, a, с
4 Y/Y-4 C, B, A
 b, a, с
∆/∆-4 C, B, A
b, a, с
5 Y/∆-5 C, B, A
c, b, a
∆/Y-5 C, B, A
c, b, a
6 Y/Y-6 C, B, A
c, b, a
∆/∆-6 C, B, A
c, b, a
7 Y/∆-7 C, B, A
c, b, a
∆/Y-7 C, B, A
c, b, a
8 Y/Y-8 C, B, A
а, c, b
∆/∆-8 C, B, A
c, b, a
9 Y/∆-9 C, B, A
b, a, с
∆/Y-9 C, B, A
b, a, с
10 Y/Y-10 C, B, A
c, b, a
∆/∆-10 C, B, A
b, a, с
11 Y/∆-11 C, B, A
c, b, a
∆/Y-11 C, B, A
c, b, a

Определение методом гальванометра

Существует несколько способов определить правильность подсоединения обмоток. Самый простой способ – использование вольтметра магнитоэлектрической системы. Его еще называют методом постоянного тока.

Для этого к концам проверяемой обмотки подключают измерительный прибор, а на другую обмотку подают постоянное напряжение. Отклонение стрелки в момент  замыкания ключа покажет полярность подключения обмотки. Такие действия производятся для каждой обмотки.

Также можно воспользоваться простым вольтметром при подключении переменного напряжения. Для этого на одну из обмоток подают пониженное переменное напряжение, а остальные две обмотки соединяют последовательно и  подключают к вольтметру. Отсутствие или слишком малые показания говорят о том, что обмотки включены встречно.

Метод тангенс–гальванометра

Примеры групповых соединений обмоток

Государственным стандартом предусмотрены только две группы соединения обмоток:

  1. Y/Y-0 или ∆/∆-0
  2. Y/∆-11 и ∆/Y-11

Жесткая стандартизация позволяет исключить аварии и повреждения в результате неправильных подключений. К тому же, для трансформаторов одинаковой мощности и коэффициента трансформации становится возможным параллельное включение устройств.

Остальное количество соединений используется крайне редко в отдельных случаях при невозможности использования стандартного варианта.

Тип подключения должен быть оговорен в сопроводительной документации и продублирован на шильдике устройства.

Примеры групповых соединений обмоток

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...