Распределенный и послойный впрыск топлива

Как работают двигатели авто с распределенным и нераспределенным впрыском топлива. Отличия ГБО для систем непосредственного и распределенного впрыска

Содержание

Распределенный впрыск топлива: экономно и экологично

Не секрет, что распределённый впрыск топлива (инжекция)  – это современная технология, тесно связанная со сложной электроникой. Главной её «фишкой» является наличие индивидуальной форсунки у каждого цилиндра бензинового мотора.

Но, на самом деле, похожие системы, правда, имеющие механическое управление, появились ещё в конце ХIХ – начале ХХ веков. Использовались они в авиации, в гоночных машинах и иногда их интерпретации даже выходили на массовый автомобильный рынок.

Настоящий же бум распределенный впрыск пережил с появлением доступных микропроцессоров в конце 80-х годов и пользуется уважением у производителей транспортных средств и по сей день.

Перейдём к принципу работы и разновидностям системы распределенного впрыска (кстати, её ещё называют многоточечной системой).

Как мы уже упомянули, ключевой особенностью данной технологии являются топливные форсунки, которые устанавливаются по одной перед впускными клапанами каждого цилиндра двигателя.

Таким образом, в отличие от моновпрыска, удаётся добиться равномерного распределения топливно-воздушной смеси по цилиндрам, а также точной её дозировки.

В целом данная схема расположения форсунок позволила инженерам значительно повысить экологичность моторов, а также сделать их менее прожорливыми. Контролирует весь этот ансамбль электронный блок управления (ЭБУ).

Он при помощи многочисленных датчиков, передающих данные о температуре, положении педали газа, количестве поступающего воздуха и прочих параметрах, вычисляет оптимальный объём бензина для впрыска и в нужный для этого момент подаёт управляющий сигнал на открытие форсунок.

Рассмотрим и другие отличия агрегатов HPi, GDI, CGI и FSI от модельного ряда MPI-моторов:

  1. В системе прямого впрыска, давление проходящего через форсунку топлива, в несколько десятков раз выше, нежели в системе распределенного впрыска. Это достигается благодаря применению ТНВД в конструкции силовых агрегатов с прямым топливовпрыском.
  2. Специальная конструкция форсунок системы прямой топливоподачи позволяет раскручивать капельки бензина на выходе, благодаря чему быстрее осуществляется их испарение. В то время как вся функция форсунки распределительной системы состоит из средств формирования топливного факела.

Как видно, система топливоподачи MPI гораздо проще во всех отношениях. Но, это далеко не все. В двигателях с прямой подачей топлива на их производительность влияет распределение воздуха внутри них и количество впрыснутого топлива в цилиндры. По этой причине поршневая часть в агрегатах с системой прямого впрыска имеет сложную профилированную конструкцию.

Подобную функцию выполняют и клапаны впуска в конструкции коллектора системы прямой подачи топлива. В конструкции HPi, GDI, CGI и FSI агрегатов предусмотрено послойное образование горючей смеси. Это говорит о том, что полностью сгорает лишь небольшое количество топлива, находящееся вблизи свечи зажигания либо происходит процесс разрушения этого облака из горючего для того, чтобы сделать всю рабочую смесь более обогащенной. В силовых бензиновых агрегатах конструкции MPI каналы для впуска топлива необходимы исключительно для впрыска смеси бензина с воздухом в цилиндры, поэтому они не имеют заслонок и винтовой формы, как моторы с прямой топливоподачей.

Такими «наворотами» перечисление отличий системы прямой подачи топлива от распределенной не заканчивается. Однако, большинство заметных моментов уже описаны выше. Если копнуть поглубже, то стоит отметить, что топливный насос высокого давления, наличие специального впускного коллектора, поршневой части особой конструкции и сложной системы форсунок отчасти можно отнести к недостаткам, наличие которых вовсе не говорит, что лишенным этого двигателям MPI придется сойти с дистанции. Во всяком случае, в ближайшее время.

Но, рано или поздно, это все же произойдет. И опять-таки по той же причине, которая относительно недавно сделала карбюратор и систему центральной подачи топлива достоянием политехнических музеев – отсутствие у системы распределенной подачи бензина высоких показателей экономии топлива без потери мощности силового агрегата, и большое количество вредных соединений в выхлопных газах автомобиля. Проведенные тестирования систем топливоподачи выявили, что силовые агрегаты с системой прямого впрыска топлива в отличие от других моторов, имеющих одинаковый объем, позволяют экономить порядка 20-25% топлива, при этом их мощность возрастает на 10%. Естественно, что ни один из существующих автопроизводителей не станет пренебрегать заявленными удовольствиями!

Но, наличие большого количества преимуществ вовсе не говорит об отсутствии недостатков. У системы прямой подачи топлива есть свой «скелет в шкафу». Если рассматривать экологическую составляющую использования прямого впрыска, то она практически идеальна, за исключением одного «но» – повышенного содержания сажи в выхлопных газах. Это и делает систему прямой топливоподачи единственным конкурентом дизельным силовым агрегатам. А это уже реальная возможность FSI поладить с MPI. Это было бы классно, но, во всяком случае, этим системам придется ладить друг с другом в одном двигателе.

Именно эту идею и воплотили в жизнь конструкторы компании Volkswagen, объединив в одном моторе обе системы MPI и FSI. Двигатели 1,8 и 2,0 TFSI относятся к третьему поколению агрегатов EA888.

Отличия ГБО для двигателей с распределенным и непосредственным впрыском

Пока что большинство автомобилей в Украине комплектуются двигателями распределенного впрыска, для которых подходит ГБО 4-го поколения. Для прямого впрыска предназначены ГБО 5-го и 6-го поколений. Их принципиальная разница в следующем:

  • в 4-м поколении газ подается на редуктор под давлением 15-16 атм., где переходит в газовую фазу. С редуктора газ подается на форсунки, установленные перед впускным коллектором;
  • 5-е поколение исключает редуктор. Жидкий газ сразу подается на форсунки благодаря системе из нескольких насосов: два общих (один в баллоне, второй – под капотом) и индивидуальные форсуночные насосы. Форсунки располагаются на рампе;
  • 6-е поколение не предусматривает ни редуктора, ни газовых форсунок – газ подается в цилиндры через родные бензиновые форсунки.

ГБО с непосредственным впрыском (TSI, FSI) требовало решения вопроса смазки бензиновых форсунок, стоящих в двигателе, что и было реализовано в ГБО 6. Если ГБО 5 использует соотношение “бензин/газ” 20/80, то в ГБО 6 газ подается через родные узлы.

Установка ГБО непосредственного впрыска занимает до 3-х дней, ГБО распределенного впрыска устанавливается быстрее – 8-12 часов. В силу ответственности установки данных комплектов рекомендуем обращаться только в авторизированные центры. PRIDE GAS – официальный дистрибьютор в Украине итальянского производителя AEB, чьи системы PRIDE by AEB отлично зарекомендовали себя на украинских дорогах. 3 года гарантии и индивидуальный подход к каждому клиенту – это только часть того, что мы готовы вам предложить.

PRIDE GAS – не стоит рисковать своим автомобилем, доверьте установку ГБО нам!

Также интересные статьи от PRIDE GAS:

ГБО Италия: подбор ГБО по марке автомобиля

ГБО Италия для двигателей с непосредственным впрыском

Рекомендуемые комплекты ГБО для двигателей распределенного впрыска 4 поколения

Особенности действия

Особенности деятельности и существования данной системы базируются на том, что необходимо обеспечивать бесперебойную подачу топлива в цилиндры с помощью форсунок, число которых равно количеству цилиндров.

Если рассматривать классификационные моменты по принципу работы, то можно выделить две основные группы систем – непрерывный впрыск и импульсную подачу. Есть электронный и механический варианты контроля их работы.

Что значит последовательность впрыска

Последовательность или фазы впрыска топлива обусловлена следующими показателями:

  • За один отработанный цикл двигателя каждая специальная форсунка отрабатывает одну фазу впрыска;
  • Время этой фазы для каждой модели автомобиля может быть разным, но при этом количество топлива в большинстве случаев одинакова.

Распределенный впрыск топлива внедряется не на каждый автомобиль, поскольку он отличается тем, что подходит только для инжекторных автомобилей. Автовладельцы, которые сталкиваются с этой системой, отмечают, что она позволяет достичь до 15 % экономии топлива.

Особенности устройства инжекторного двигателя

Для того чтобы грамотно эксплуатировать автомобиль, у которого имеется система питания бензинового двигателя с впрыском топлива, необходимо иметь представление о его работе. Особенно когда речь идет об отечественных автомобилях, инжекторной системе подачи топлива ВАЗ 2114 и других машин.

Без этого будет сложно самому понимать и устранять возможные неисправности машины. Усвоив особенности конструкции, принцип работы, устройство инжекторного двигателя можно разобраться в неисправности и даже устранить ее, не обращаясь на СТО.

Инжекторным двигателем управляет контроллер. В отечественных машинах его обычно размещают справа под приборной панелью. Задача этого прибора — непрерывно обрабатывать информацию о состоянии мотора и обеспечивать надежную работу его систем. Блок управления включает различные реле, форсунки, датчики.

С помощью встроенной системы диагностики происходит распознавание неполадки в двигателе, сигнализируя контрольной лампой, хранит коды диагностики неисправностей. Она располагает тремя запоминающими устройствами, позволяющими оперативно анализировать техническое состояние за разные периоды времени.

Принципиальной особенностью двигателя является наличие форсунок, которые обеспечивают дозированный впрыск топливовоздушной смеси во впускную трубу после получения команды от управляющего блока. При этом необходимый воздух подается при помощи дроссельного узла и регулятора холостого хода. Форсунки крепятся к рампе, которая установлена на впускной трубе.

Форсунка представляет собой электромеханический клапан, который при помощи пружины запирается иглой. Когда от блока управления подается на обмотку электромагнита форсунки импульс, игла поднимается, открывая сопло распылителя. Через него смесь подается во впускную трубу мотора. Форсунки требуют постоянного контроля. Малейшее их засорение может негативно сказаться на работе двигателя.

Также важной частью этого двигателя является нейтрализатор, который преобразует вредные компоненты отработанных газов.

Система непосредственного впрыска топлива в бензиновых двигателях: принцип работы

Система непосредственного впрыска топлива в бензиновых двигателях на сегодняшний день представляет собой наиболее совершенное и современное решение. Главной особенностью непосредственного впрыска можно считать то, что горючее подается в цилиндры напрямую.

По этой причине данную систему также часто называют прямым впрыском топлива. В этой статье мы рассмотрим, как работает двигатель с непосредственным впрыском топлива, а также какие преимущества и недостатки имеет такая схема.

Прямой впрыск топлива: устройство системы непосредственного впрыска

Как уже было сказано выше, горючее в подобных системах питания подается непосредственно в камеру сгорания двигателя. Это значит, что форсунки распыляют бензин не во впускном коллекторе, после чего топливно-воздушная смесь поступает через впускной клапан в цилиндр, а впрыскивают топливо в камеру сгорания напрямую.

Первыми бензиновыми двигателями с непосредственным впрыском стали моторы GDI на моделях японской компании Mitsubishi. В дальнейшем схема получила широкое распространение, в результате чего сегодня ДВС с такой системой подачи топлива можно встретить в линейке многих известных автопроизводителей.

Например, концерн VAG представил ряд моделей Audi и Volkswagen с атмосферными и турбированными бензиновыми двигателям TFSI, FSI и TSI, которые получили непосредственный впрыск топлива. Также двигатели с прямым впрыском производит компания BMW, Ford, GM, Mercedes и многие другие.

Такое широкое распространение непосредственный впрыск топлива получил благодаря высокой экономичности системы (около 10-15% по сравнению с распределенным впрыском), а также более полноценному сгоранию рабочей смеси в цилиндрах и снижению уровня токсичности отработавших газов.

Система непосредственного впрыска: конструктивные особенности

Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:

  1. контур высокого давления;
  2. бензиновый ТНВД;
  3. регулятор давления;
  4. топливную рампу;
  5. датчик высокого давления;
  6. инжекторные форсунки;

Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.

РДТ (регулятор давления топлива) интегрирован в насос и отвечает за дозированную подачу топлива, что соответствует впрыску форсунки. Топливная рейка (топливная рампа) нужна для того, чтобы распределить горючее на форсунки. Также наличие данного элемента позволяет избежать скачков давления (пульсации) горючего в контуре.

Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.

Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.

Что касается инжекторной форсунки, элемент обеспечивает своевременную подачу и распыл топлива в камере сгорания, чтобы создать необходимую топливно-воздушную смесь. Отметим, что описанные процессы протекают под управлением ЭСУД (электронная система управления двигателем). Система имеет группу различных датчиков, электронный блок управления, а также исполнительные устройства.
Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.

Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.

Как работает система непосредственного впрыска топлива

Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.

Следует выделить послойное смесеобразование, стехиометрическое, а также гомогенное. Именно такое смесеобразование позволяет в конечном итоге максимально эффективно расходовать топливо. Смесь всегда получается качественной независимо от режима работы ДВС, бензин сгорает полноценно, двигатель становится более мощным, при этом одновременно снижается токсичность выхлопа.

  1. Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии. Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
  2. Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
  3. Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.

За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».

Если же рассматривать гомогенное стехиометрическое смесеобразование, такой процесс происходит тогда, когда впускные заслонки открыты, при этом дроссельная заслонка также открыта на тот или иной угол (зависит от степени нажатия на педаль акселератора).
В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.

Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта, а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.

Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.

Момент впрыск топлива

Кстати, о времени открытия форсунок. Тут не всё так просто, и системы распределённого впрыска различаются в зависимости от того, в каком порядке происходит активация этих элементов. Существуют такие варианты впрыска:

  • одновременный;
  • попарно-параллельный;
  • фазированный.

Одновременный

При одновременной инжекции бензина все форсунки открываются единомоментно, и происходит это за один полный рабочий цикл двигателя (два оборота коленчатого вала). Не считаю это разумным ходом и не понимаю зачем лишний расход топлива.

Видимо это практиковалось на заре изобретения такого метода, когда не очень беспокоились об экологии и бензин был дешевый.

Попарно-параллельный

При попарно-параллельном открытии процесс разбивается таким образом, чтобы в один момент времени впрыск производили только две форсунки и только тех цилиндров, которые переходят в такты впуска и выпуска.

Здесь тоже наблюдается лишний впрыск, зачем он нужен в такте выпуска. Говорят это помогает при запуске двигателя в аварийном режиме. Ну хоть единовременно, и то хорошо.

Фазированный

Но самым современным из перечисленной тройки является фазированный алгоритм работы системы  распределенного впрыска топлива и используется в современных автомобилях. Он предусматривает включение каждой форсунки непосредственно перед тактом впуска соответствующего ей цилиндра. Это конечно разумно и правильно.

Главное в таком впрыске то, что форсунка впрыскивает топливную смесь во впускной коллектор на входе в цилиндр, непосредственно на впускной клапан. Впрыск производится на такте ВПУСК.

Распределенный впрыск топлива

Системы питания непосредственного действия

Системы питания непосредственного действия получили широкое распространение на дизелях различного назначения. Основными элементами этой системы являются насос высокого давления, форсунка, фильтры грубой и тонкой очистки, привод плунжера высокого давления. По способу привода плунжера эти системы разделяют на системы с механическим, газовым, пружинным и пневмогидравлическим приводами.

Рис. Типы систем питания дизелей

Принципиальная схема системы питания дизеля с механическим приводом плунжера насоса высокого давления показана на рисунке. Топливо поступает в систему из бака 1 через фильтр 2 грубой очистки при помощи подкачивающего насоса 3 и подается через фильтры 5 тонкой очистки в приемную полость насоса 6 высокого давления. Перепускные клапаны 4 и 11 поддерживают в системе определенное давление, отводя излишки топлива по сливным топливопроводам 12 в бак. Давление в подводящей линии контролируют манометром 10. Насос высокого давления, состоящий из отдельных секций, число которых равно числу цилиндров, отмеривает в соответствии с режимом работы дизеля определенную порцию топлива, сжимает ее и подает по нагнетательному топливопроводу через фильтр 7 высокого давления и форсунку 8 в камеру сгорания 1 в заданную фазу рабочего процесса двигателя. Просочившееся через зазоры в насосе и форсунках топливо отводится по сливным топливопроводам 12 в расходный бак. Нередко топливо используют и для охлаждения форсунки, находящейся в тяжелых температурных условиях. В этом случае предусматривают дополнительные трубопроводы для подвода и отвода охлаждающего топлива к форсунке.

Рис. Схема питания дизеля с механическим приводом плунжера насоса высокого давления: 1 — топливный бак; 2 — фильтр грубой очистки; 3 — подкачивающий насос; 4, 11 — перепускные клапаны; 5 — фильтры тонкой очистки, 6 — насос высокого давления; 7 — фильтр высокого давления; 8 — форсунка; 9 — фильтр перепускного топливопровода; 10 — манометр, 12 — сливные топливопроводы

В процессе эксплуатации систем питания возможно проникание воздуха в топливопровод низкого давления через неплотности соединений, а также образование паров три разрывах сплошности течения. Крайне нежелательно появление в трубопроводах таких паров, так как они нарушают правильную работу системы. Для устранения этого вредного явления в местах возможного скопления газов для их выпуска устанавливают игольчатые клапаны, предусматривают постоянную циркуляцию топлива в системе, в результате которой газы увлекаются топливом и отводятся в бак, откуда их можно удалять.

В топливных системах с газовым приводом на плунжер насоса высокого давления через дополнительный поршень действуют газы цилиндра дизеля. Использование газов позволяет значительно упростить конструкцию привода. С этой точки зрения применение топливных систем с газовым приводом перспективно для мощных судовых дизелей. Кроме того, в судовых дизелях с такой системой питания не требуется установка специальных устройств реверса.

В насосе высокого давления с газовым приводом всасывающий ход плунжера 2 осуществляется три помощи пружины 4. Когда верхняя кромка В плунжера откроет наполнительное окно 3, топливо поступает в надплунжерное пространство Н гильзы. Газовый поршень 6 при этом (вытесняет воздух через дросселирующую иглу 9 и канал 10 в цилиндр двигателя. В момент подачи топлива газы из цилиндра через клапан 11 и иглу 9 поступают под поршень, воздействуют на него, заставляя перемещаться вверх. Плунжер насоса после перекрытия окна 3 сжимает топливо и через нагнетательный клапан 1 подает его в систему для впрыска через форсунку. Регулирование подачи осуществляется поворотом плунжера 2 при помощи устройства 5, которое позволяет изменять положение регулирующей кромки Р плунжера относительно окна 3. Газовый поршень уплотняют компрессионными кольцами 7, а температурное его состояние поддерживают путем циркуляции воды через водяную рубашку 8. Для нормальной работы газового поршня предусматривают ограничители перемещений демпфера колебаний с обеих сторон.

Рис. Схема насоса высокого давления с газовым приводом плунжера: 1 — нагнетательный клапан, 2 — плунжер, 3 — окно, 4 — пружина, 5 — поворотное устройство, 6 — газовый поршень, 7 — компрессионные кольца, 8 — водяная рубашка, 9 — игла, 10 — канал подвода газа; 11 — газовый клапан, В — верхняя кромка; Н — надплунжерное пространство, Р — регулирующая кромка

Рис. Схема впрыскивающего насоса с пружинным приводом плунжера: 1 — нагнетательный клапан; 2 — плунжер, 3 — пружина плунжера; 4 — толкатель; 5 — кулачок, 6 — рычаг толкателя; 7 — пружина, 8 — борт регулирования пружины; 9 — ось рычага; 10 — демпфирующий поршень, 11 — упор рычага; 12 — шток, 13 — нижний клин; 14 — верхний клин; 15 — винт; 16 — всасывающий клапан.

В топливных системах с пружинным приводом плунжера насоса высокого давления топливный кулачок действует не на плунжер, а на специальный подпружиненный рычаг. При набегании выступающей части кулачка 5 на рычаг 6 толкателя, связанного осью 9 с толкателем 4, происходит сжатие пружины 7 и аккумулирование в ней энергии. Плунжер 2 при этом под действием пружины 3 плунжера передвигается вниз, и через всасывающий клапан 16 топливо поступает в гильзу насоса. После сбегания (выступающей части кулачка с рычага сжатия пружина перемещает толкатель 4, а вместе с ним и плунжер 2 вверх. При этом топливо через нагнетательный клапан 1 поступает в топливопровод и через, форсунку в камеру сгорания. Подача происходит до тех пор, пока толкатель 4 не упрется своим выступом в направляющую. Предварительное натяжение пружины 7 регулируют болтом 8.

Рекомендуем: Как выбрать колонки для автомобиля

Цикловую подачу изменяют при помощи нижнего клина 13, соединенного с регулятором. При перемещении клина вправо шток 12 сдвигается вниз. Поэтому перемещается вниз и упор 11 рычага 6 толкателя, а правый конец рычага поднимается. Выступающая часть кулачка раньше коснется правого конца рычага, поэтому раньше начнется всасывание и увеличится полезный ход плунжера. При перемещении нижнего клина 13 влево демпфирующий поршень 10 передвинет упор 11 рычага 6 толкателя вверх, кулачок позже коснется рычага 6 толкателя, полезный ход плунжера уменьшится, что приведет к снижению цикловой подачи.

Рис. Схема впрыскивающего насоса с пневмогидравлическим приводом плунжера: А — приемная полость, Б — сливная полость; 1 — нагнетательный клапан; 2 — плунжер; 3 — пружина плунжера; 4 — толкатель; 5 — полость амортизатора; 6 — цилиндр золотника; 7 — пружина золотника; 8 — правая щель; 9 — упор; 10 — камера; 11 — полость для рабочей жидкости; 12 — мембрана; 13 — левая щель; 14 — кулачок; 15 — канал подвода топлива; 16 — центральная щель; 17 — дросселирующие отверстия

Равномерность распределения топлива по отдельным цилиндрам регулируют верхним клином 14 при помощи винта 15.

В топливных системах с пневмогидравлическим приводом плунжера топливо служит одновременно и рабочей жидкостью сервопривода. Шестеренный насос по каналу 15 подает топливо под давлением 7 МПа в объем А цилиндра 6 золотника. При соответствующем положении золотника, управляемого кулачком 14, топливо поступает через щели 13 и 16 в полость 11. Для стабилизации давления на топливо, находящееся в этой полости, через мембрану 12, нагруженную пружиной, действует воздух камеры 10. Движение мембраны вверх ограничивается упором 9. Под действием давления топлива толкатель 4 перемещается вверх, увлекая за собой плунжер 2, и после перекрытия всасывающего окна топливо через нагнетательный клапан 1 поступает в топливопровод и форсунку. Гидравлический амортизатор, имеющий полость 5, ограничивает верхнее передвижение толкателя и предотвращает возможные его удары об упоры при резком уменьшении усилия плунжера в момент отсечки. После прекращения подачи плунжер золотника под действием пружины 7 и при повороте кулачка перемещается влево, соединяя через дросселирующие отверстия 17 и щель 8 объем под толкателем со сливной полостью Б. Под действием пружины 3 плунжер насоса совершает всасывающий ход и одновременно передвигает вниз толкатель. Наличие дросселирующих отверстий 17 предотвращает резкие передвижения плунжера, отрицательно влияющие на работу всей системы. Резкий подъем плунжера сопровождается неблагоприятным изменением количества впрыскиваемого топлива, а резкая его посадка может вызвать разрыв сплошности течения в полости всасывания и ухудшить наполнение надплунжерной полости.

Использование пневмогидравлического привода позволяет избавиться от громоздкого кулачкового валика, устранить влияние упругих деформаций на параметры впрыска, расширить диапазон устойчивых скоростных и нагрузочных режимов работы дизеля в результате стабилизации параметров рабочего процесса системы. Однако конструкция пневмогидравлического привода усложнена в результате установки специального механизма с автономным питанием, что препятствует пока широкому его внедрению.

Все рассмотренные системы с непосредственным впрыском топлива могут быть разделены на две группы по способу соединения насоса и форсунки. В первую группу входят системы, у которых насос и форсунка соединены нагнетательным трубопроводом высокого давления, а вто вторую — системы с объединенными насосом и форсункой в одном агрегате, называемом насосом-форсункой. В системах с насосами-форсунками полностью отсутствует нагнетательный топливопровод, поэтому исключается опасность возникновения нежелательных дополнительных впрысков и влияние упругих колебаний топлива в системе высокого давления на протекание впрыска. Кроме того, значительно уменьшается объем топлива, находящегося между насосом и форсункой, и поэтому меньше искажается характеристика впрыска, заданная профилем кулачка, увеличивается среднее давление подачи топлива и уменьшается угол запаздывания впрыска. Следовательно, топливная система принимает более компактный вид.

К недостаткам систем с насосами-форсунками следует отнести:

  • сложность и трудоемкость конструкции;
  • сложность привода насоса-форсунки, расположенного на цилиндровой крышке;
  • трудность обеспечения надлежащей жесткости деталей этого привода (штанги, коромысла и др.);
  • трудность размещения насоса-форсунки в цилиндровой крышке;
  • неудобство проведения текущих осмотров, так как требуется одновременно разбирать не только форсунку, но и насос;
  • трудности эксплуатации, состоящие в том, что при каждом демонтаже насоса-форсунки приходится предварительно снимать рычаги ее привода и клапанов цилиндра.

Насосы-форсунки применяют в основном для быстроходных дизелей.

В погоне за показателями

Выше мы уже говорили о том, что система многоточечной инжекции позволила двигателям стать гораздо более «чистыми» по сравнению с предшественниками, оснащёнными моновпрыском или карбюратором.

Тем не менее, защитникам окружающей среды этого было мало и с каждым годом автопроизводителям приходилось учитывать всё более жёсткие экологические нормы.

Что же лучше — таблица?

Предлагаю подумать, составил таблицу по плюсам того и другого типов

Распределенный (MPI) плюсы: Непосредственный (GDI) плюсы:
Дешевый Мощнее (около 5%)
Простой Меньший расход (до 10%)
Работают больше без очистки Экологичнее
Не требовательны к качеству топлива
Инжектора проще конструкция

Как видите и тот и другой тип имеют весомые преимущества перед другим, видимо пока существуют оба.

Сейчас видео версия смотрим.

А теперь голосование, как ВЫ считаете что лучше – MPI (распределенный) или GDI (непосредственный)?

НА этом заканчиваю, думаю, моя статья и видео были вам полезны. Читайте наш АВТОБЛОГ, подписывайтесь на обновления.

Похожие новости

  • Можно ли заливать дизельное масло в бензиновый двигатель. Какие …
  • Расточка блока цилиндров. Зачем нужно двигателю и можно ли сдела…
  • Гидрокомпенсаторы или толкатели (клапанов). Что лучше?

Добавить комментарий Отменить ответ

Основные неисправности

Чаще всего сбои инжекции проявляются несколькими неисправностями:

  • не заводится мотор (неисправно главное реле, не работает насос, на форсунках нет напряжения);
  • неустойчиво работает холодный двигатель (неисправен температурный датчик);
  • мотор плохо работает на переходах (неисправен насос или форсунка);
  • мотор глохнет (вышла из строя топливная система, разгерметизировался впуск воздуха).

Непосредственный впрыск

Системы с непосредственным впрыском наиболее сложные и дорогие, однако только они могут обеспечить наилучшие показатели по мощности и экономичности. Также непосредственный впрыск дает возможность быстро изменять режим работы двигателя, максимально точно регулировать подачу топлива в каждый цилиндр и т.д.

В системах с непосредственным впрыском топлива форсунки установлены непосредственно в головке, распыляя топливо сразу в цилиндр, избегая «посредников» в виде впускного коллектора и впускного клапана (или клапанов).

Такое решение довольно сложно в техническом плане, так как в головке цилиндра, где и так уже расположены клапаны и свеча, необходимо разместить еще и форсунку. Поэтому непосредственный впрыск можно использовать только в достаточно мощных, а поэтому больших по габаритам двигателях. Кроме того, такую систему невозможно установить на серийный двигатель — его приходится модернизировать, что связано с большими затратами. Поэтому непосредственный впрыск сегодня используется только на дорогих автомобилях.

Системы с непосредственным впрыском требовательны к качеству топлива и нуждаются в более частом техническом обслуживании, однако они дают существенную экономию топлива и обеспечивают более надежную и качественную работу двигателя. Сейчас наблюдается тенденция снижения цены машин с такими двигателями, поэтому в будущем они могут серьезно потеснить автомобили с инжекторными двигателями других систем.

Преимущества и недостатки системы распределенной подачи ТС

Подобный тип системы топливной подачи имеет некоторые преимущества и недостатки. Наиболее значимые из них мы отдельно выделим.

Преимущества системы:

  • долговечность и надежность;
  • высокая экономичность использования топлива;
  • низкая токсичность отработанных газов бензиновых ДВС;
  • низкая вероятность появления сбоев в работе системы в условиях экстремального вождения (например, при преодолении крутых спусков и подъемов, при езде в дождь или гололед).

Недостатки системы:

  • сложная и дорогостоящая конструкция, оснащенная чувствительной системой электронного управления;
  • высокая стоимость ремонта и замены основных электронных элементов системы;
  • особенность конструкции требует проведения ремонтных и профилактических работ только высококвалифицированными специалистами.

Чем же отличается распределенный впрыск топлива от непосредственного?

А вот в чем. Как уже было сказано выше, при распределенном впрыске, смесь поступает в коллектор в область впускного клапана. А при непосредственном впрыске, прямо в камеру сгорания, минуя впускной коллектор.

Непосредственный впрыск

Непосредственный впрыск более точен и подаваемое давление топливной смеси выше, чем у распределенного впрыска. Такой принцип экономичнее (до 20% экономии топлива). экологичнее (топливо лучше сгорает). Но все же такой тип системы не лишен недоствтков и конструкторы пошли дальше.

А вот что из этого вышло, и какие технологии появились в результате, в Комбинированная система впрыска топлива TFSI.

Сравнение распределенного и непосредственного впрыска

//www.youtube.com/watch?v=lW7UOR68poQ

До встречи на страницах блога!

Интересные новости по теме

Оставить комментарий

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...