Двигатель постоянного тока с параллельным возбуждением (независимым): принцип работы

Двигатель постоянного тока независимого возбуждения (ДПТ НВ) В этом двигателе (рисунок 1) обмотка возбуждения подключена к отдельному источнику питания. В цепь

Механическая характеристика двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Уравнение механической характе­ристики двигателя постоянного тока независимого возбуждения имеет вид

Уравнение механической характе­ристики двигателя постоянного тока независимого (параллельного) воз­буждения

где: n0 — частота вращения вала двигателя при холостом ходе. Δn — изменение частоты вращения двигателя под действием механической нагрузки.

Из этого уравнения следует, что механические характеристики двигателя постоянного тока независимого возбуждения (ДПТ НВ) прямолинейны и пересекают ось ординат в точке холостого хода n0 (рис 13.13 а), при этом изменение частоты вращения двигателя Δn, обусловленное изменением его механической нагрузки, пропорционально сопротивлению цепи якоря Rа =∑R + Rдоб. Поэтому при наименьшем сопротивлении цепи якоря Rа = ∑R, когда Rдоб = 0, соответствует наименьший перепад частоты вращения Δn. При этом механическая характеристика становится жесткой (график 1).

Механическая характеристика двигателя постоянного тока независимого возбуждения ДПТ

Механические характеристики двигателя, полученные при номинальных значениях напряжения на обмотках якоря и возбуждения и при отсутствии добавочных сопротивлений в цепи якоря, называют естественными рисунок 13.13, а (график 1 Rдоб = 0).

Если же хотя бы один из перечисленных параметров двигателя изменен (напряжение на обмотках якоря или возбуждения отличаются от номинальных значений, или же изменено сопротивление в цепи якоря введением Rдоб), то механиче­ские характеристики называют искусственными.

Искусственные механические характеристики, полученные введением в цепь якоря добавочного сопротивления Rдоб, называют также реостатными (графики 2 и 3).

При оценке регулировочных свойств двигателей постоянного тока наибольшее значение имеют механические характеристики n = f(M). При неизменном моменте нагрузки на валу двигателя с увеличением сопротивления резистора Rдоб частота вращения уменьшается. Сопротивления резистора Rдоб для получения искусственной механической характеристики, соответствующей требуемой частоте вращения n при заданной нагрузке (обычно номинальной) для двигателей независимого возбуждения:

Снимок 5

где U — напряжение питания цепи якоря двигателя, В;  — ток якоря, соответствующий заданной нагрузке двигателя, А; n — требуемая частота вращения, об/мин; n0 — частота вращения холостого хода, об/мин.

Частота вращения холостого хода n0 представляет собой пограничную частоту вращения, при превышении которой двигатель переходит в генераторный режим. Эта частота вращения превышает номинальную nном на столько, на сколько номинальное напряжение Uном подводимое к цепи якоря, превышает ЭДС якоря Ея ном при номинальной нагрузки двигателя.

Снимок 7

откуда:

Снимок 8

На форму механических характеристик двигателя влияет величина основного магнитного потока возбуждения Ф. При уменьшении Ф (при возрастании сопротивления резистора rpeг) увеличивается частота вращения холостого хода двигателя n0 и перепад частоты вращения Δn. Это приводит к значительному изменению жесткости механической характеристики двигателя (рис. 13.13, б). Если же изменять напряжение на обмотке якоря U (при неизменных Rдоб и Rрег), то меняется n0, a Δn остается неизменным [см. (13.10)]. В итоге механические характеристики смещаются вдоль оси ординат, оставаясь параллельными друг другу (рис. 13.13, в). Это создает наиболее благоприятные условия при регулировании частоты вращения двигателей путем изменения напряжения U, подводимого к цепи якоря. Такой метод регулирования частоты вращения получил наибольшее распространение еще и благодаря разработке и широкому применению регулируемых тиристорных преобразователей напряжения.

Используемая литература: — Кацман М.М. Справочник по электрическим машинам

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Схематическое изображение простейшего ДПТРисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Схемы подключения обмоток статораРисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Ротор с тремя обмоткамиРисунок 3. Ротор с тремя обмоткамиЯкорь со многими обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Схема электромотора с многообмоточным якоремРисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Устройство (схема) двигателя постоянного тока

Двигатель постоянного тока с параллельным возбуждением (независимым): принцип работы

Конструкция электродвигателя постоянного тока состоит

из следующих элементов:

1.вал электродвигателя, на который устанавливаются остальные детали.

2. якорь (ротор) двигателя, который включает в себя:

2.1.сердечник якоря, представленный в виде набора пластин из специальной электротехнической стали;

2.2.якорная обмотка;

2.3.коллектор;

2.4.главный полюс, представляющий собой набор пластин из электротехнической стали. Для двигателей малых размеров полюсы изготавливаются из постоянных магнитов;

2.5.обмотка возбуждения;

2.6.монолитные добавочные полюса (в двигателях малых размеров не применяются) предназначены для улучшения коммутации и располагаются между главными полюсами;

2.7.обмотка из эмалированных проводов добавочного полюса;

Двигатель постоянного тока с параллельным возбуждением (независимым): принцип работы

3.

корпус электродвигателя, который чаще всего выполняется из чугуна, так как данный материал обеспечивает возможность эксплуатации электродвигателя в местах с агрессивной средой и обладает высоким уровнем устойчивости к износам. Также для улучшения корпус двигателя может изготавливаться со специальными ребрами, которые обеспечивают термический баланс электродвигателя. Полюсы, образующие индуктор, а также якорь, устанавливаются в корпус двигателя. 

4.клеммная коробка. Концы обмоток полюсов двигателя выводятся в клеммную коробку, в которой установлены клеммы с подключенными концами обмоток индуктора и клеммы для подключения щеток якоря. Также предусмотрено одно-два отверстия для установки сальников, через которые заводятся  силовые кабели для подключения питания. В машинах малой мощности выводы обмоток размещаются в клеммной коробке, при этом один из зажимов добавочных полюсов и один из зажимов якоря (щеточная траверса) соединены наглухо внутри машины, а в клеммную коробку выведены другие зажимы якоря и добавочных полюсов. В крупных машинах с высоким номинальным током клеммная коробка отсутствует, а выводные концы размещаются в нижней части станины машины. При этом выводные концы параллельной цепи выполняются в виде жил кабелей с наконечниками, последовательной – в виде шин.

Также в конструкции присутствуют такие элементы: 

•передний и задний подшипниковые щиты, а также внутренние подшипниковые крышки, которые прикручиваются к подшипниковым щитам; 

•щеточный узел, который состоит из кронштейна, щеткодержателей и щеток (графитовых или металло-графитовых). Данный узел крепится на выпуклой части подшипниковой крышки заднего подшипникового щита. Он предназначен для подвода “питания” к катушкам на вращающемся роторе и переключения тока в обмотках якоря;

Двигатель постоянного тока с параллельным возбуждением (независимым): принцип работы

вентилятор охлаждения, обеспечивающий поддержание низкой рабочей температуры;

•подшипниковые щиты;

•подшипники;

•наружные подшипниковые крышки, закрывающие подшипники;

•проушины или рым-болты, которые упрощают погрузочно-разгрузочные работы и монтаж двигателя;

•лапы, которые обеспечивают низкий уровень вибрации электродвигателя во время работы;

•защитный кожух вентилятора и кожух выхода воздуха обдува;

•шильдик, на котором указывается основные характеристики двигателя.

Характеристики двигателя постоянного тока с параллельным возбуждением

Формула общего тока, идущего от источника, выводится согласно первому закону Кирхгофа и имеет вид: I = Iя + Iв, где Iя  – ток якоря, Iв – ток возбуждения, а I – ток, который двигатель потребляет от сети. Следует отметить, что при этом Iв не зависит от Iя, т.е. ток возбуждения не зависит от нагрузки. Величина тока в обмотке возбуждения меньше тока якоря и составляет примерно 2-5% от сетевого тока.

В целом, данные электродвигатели отличаются следующими весьма полезными тяговыми параметрами:

  • Высокая экономичность (поскольку ток якоря не проходит через обмотку возбуждения).
  • Устойчивость и непрерывность рабочего цикла при колебаниях нагрузки в широких пределах (т.к. величина момента сохраняется даже в случае изменения числа оборотов вала).

При недостаточном моменте пуск осуществляется посредством перехода на смешанный тип возбуждения.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Принцип работы ДПТРис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Способы подключения электродвигателя постоянного тока 

Двигатели постоянного тока производятся зачастую с параллельным, последовательным и независимым типом возбуждения. В зависимости от типа возбуждения маркировка контактов в клеммной коробке различается. Исходя из вида возбуждения, выполняется различное подключение питающего кабеля.

Для начала рассмотрим подключение кабеля к клеммам электродвигателя с независимым возбуждением обмоток. 

Двигатель постоянного тока с параллельным возбуждением (независимым): принцип работы

В кабельный ввод заводим два двухжильных кабеля с жилами серого и синего цветов. Выполняем зачистку кабеля и жил, после чего надеваем на них кабельные наконечники. 

После оконцевания производим подключение жил согласно схеме на внутренней стороне крышки клеммной коробки. Для данного подключения используем схему для двигателей с независимым возбуждением, когда напряжение на обмотки возбуждения и якорь двигателя подаются от независимых источников.

Жилы кабелей подключаем по следующей схеме:

•жила синего цвета первого кабеля – клемма Н1;

•жила серого цвета первого кабеля – клемма Н2;

•жила серого цвета второго кабеля – клемма Д2;

•жила синего цвета второго кабеля – клемма Я2. 

Двигатель постоянного тока с параллельным возбуждением (независимым): принцип работы

Теперь рассмотрим подключение электродвигателя с параллельным и последовательным возбуждением обмоток. Для этого заводим один двухжильный кабель с жилами серого и синего цветов и зачищаем. После этого надеваем на токопроводящие жилы кабельные наконечники.

Для подключения последовательного возбуждения между контактами в определенном порядке устанавливается гибкая перемычка с двух сторон между клеммами С2 и Я2 при помощи провода с наконечниками. Питающий кабель подключаем по следующей схеме:

•жила серого цвета первого кабеля – клемма Д2;

•жила синего цвета первого кабеля – клемма С1.

Двигатель постоянного тока с параллельным возбуждением (независимым): принцип работы

Для подключения параллельного возбуждения устанавливаем перемычки между контактами Д2 и Ш1 и между контактами Я2 и Ш2. Питающий кабель подключаем следующим образом:

•жила серого цвета – клемма Д2 или Ш1;

•жила синего цвета – клемма Я2 или Ш2. 

Сферы применения двигателя

Поскольку частота вращения подобных двигателей остается почти постоянной даже при изменении нагрузки, а также может изменяться при помощи регулировочного реостата, они широко применяются в работе с:

  • вентиляторами;
  • насосами;
  • шахтными подъемниками;
  • подвесными электрическими дорогами;
  • станками (токарными, металлорежущими, ткацкими, печатными, листоправильными и пр.).

Таким образом, этот вид двигателей в основном используется с механизмами, требующими постоянства скорости вращения или ее широкой регулировки.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Двигатель с независимым возбуждением

Двигатель постоянного тока независимого возбуждения как раз и реализует третий принцип регулирования скорости. Его отличие в том, что обмотка возбуждения и магнитное поле главных полюсов подключаются к разным источникам. Ток возбуждения является неизменной характеристикой, а магнитное поле меняется. При этом изменяется число оборотов вала на холостом ходу, жесткость характеристики остается прежней.

Таким образом, принцип работы дпт с независимым возбуждением является достаточно сложным вследствие независимой работы двух источников, тем не менее, его главное преимущество – большая экономичность.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...