Что такое тарелка клапана в двигателе

Доработанные тарелки клапанов. Взгляд в историю. Зачем это надо делать. Работа двигателя после данной доработки. Мягкость работы механизма ГРМ.

Теплота, отводимая в систему охлаждения

Системой охлаждения отводится около 33 % тепловой энергии, содержащейся в используемом топливе. Уже на заре развития двигателей внутреннего сгорания начались поиски путей преобразования хотя бы части теплоты, отводимой в систему охлаждения, в эффективную мощность двигателя. В то время широко и достаточно эффективно применялся паровой двигатель с теплоизолированным цилиндром и поэтому, естественно, стремились применить этот метод теплоизоляции и для двигателя внутреннего сгорания. Опыты в этом направлении проводили крупные специалисты, такие, например, как Р. Дизель. Однако в ходе опытов выявились значительные проблемы.

В применяемом в двигателях внутреннего сгорания кривошипном механизме давление газов на поршень и сила инерции поступательно-движущихся масс прижимают поршень к стенке цилиндра, что при высокой скорости поршня требует обеспечения хорошего смазывания этой трущейся пары. Температура масла при этом не должна превышать допустимых границ, что ограничивает в свою очередь температуру стенки цилиндра. Для современных моторных масел температура стенки цилиндра не должна быть выше 220 °C, в то время как температура газов в цилиндре при сгорании и ходе расширения на порядок выше, и цилиндр по этой причине необходимо охлаждать.

Другая проблема связана с поддержанием нормальной температуры выпускного клапана. Прочность стали при высокой температуре падает. При использовании специальных сталей в качестве материала выпускного клапана его максимально допустимая температура может быть доведена до 900 °C.

Температура газов в цилиндре при сгорании достигает 2500—2800 °C. Если бы теплота, передаваемая стенкам камеры сгорания и цилиндра, не отводилась, то их температура превысила бы допустимые значения для материалов, из которых изготовлены эти детали. Теплота, отводимая охлаждением через стенки камеры сгорания, рассчитывается по формуле

Q = S∙Δt∙α∙τ,

где S — площадь охлаждаемой поверхности, м2; Δt — перепад температур между стенкой камеры сгорания и газом, °C; α — коэффициент теплоотдачи, Дж/м2∙с∙град.; τ — время, с.

Установить значение α — коэффициента теплоотдачи от газов к стенкам достаточно сложно, поскольку он в значительной мере зависит от скорости газа около стенки. В камере сгорания определить эту скорость практически невозможно, так как она меняется в течение всего рабочего цикла. Точно так же сложно определить перепад температур между стенкой цилиндра и воздухом. При впуске и в начале сжатия воздух холоднее, чем стенки цилиндра и камеры сгорания, и поэтому теплота передается от стенки воздуху. Начиная с некоторого положения поршня при такте сжатия, температура воздуха становится выше температур стенок, и тепловой поток изменяет направление, т. е. теплота передается от воздуха стенкам цилиндра. Расчет теплопередачи при таких условиях представляет собой задачу большой сложности.

Резкие изменения температуры газов в камере сгорания оказывают влияние и на температуру стенок, которая на поверхности стенок и глубине менее 1,5—2 мм колеблется в течение одного цикла, а глубже — устанавливается на некотором среднем значении. При расчетах теплопередачи именно это среднее значение температуры нужно принимать для наружной поверхности стенки цилиндра, с которой теплота передается охлаждающей жидкости.

Поверхность камеры сгорания включает в себя не только принудительно охлаждаемые детали, но и днище поршня, тарелки клапанов. Теплоотдача в стенки камеры сгорания тормозится слоем нагара, а в стенки цилиндра — масляной пленкой. Головки клапанов должны быть плоскими, чтобы под воздействием горячих газов находилась минимальная площадь. При открывании впускной клапан охлаждается потоком входящего заряда, тогда как выпускной клапан в процессе работы сильно нагревается отработавшими газами. Стержень этого клапана защищен от воздействия горячих газов длинной направляющей, доходящей почти до его тарелки.

Как уже отмечалось, максимальная температура выпускного клапана ограничена температурной прочностью материала, из которого он изготовлен. Теплота от клапана отводится главным образом через его седло к охлаждаемой головке цилиндра и отчасти через направляющую, которую также необходимо охлаждать. У выпускных клапанов, работающих в тяжелых температурных условиях; стержень делается полым и частично заполняется натрием. Когда клапан нагрет, натрий находится в жидком состоянии, и поскольку он не заполняет всю полость стержня; то при движении клапана интенсивно перемещается в ней, отводя тем самым теплоту от тарелки клапана к его направляющей и далее — в охлаждающую среду.

Тарелка выпускного клапана имеет наименьший перепад температур с газами в камере сгорания и поэтому при сгорании ему передается относительно небольшое количество теплоты. Однако при открывании выпускного клапана теплопередача от потока отработавших газов к тарелке клапана весьма велика, что и определяет его температуру.

Клапанная группа

Завершающим звеном механизма газораспределения является клапанная группа, которая включает в себя клапан, пружину, детали крепления клапана и пружины, направляющую втулку и седло клапана.

kl_gr.jpg

Клапанная группа работает при больших механических и тепловых нагрузках. Наиболее нагруженным является сопряжение «клапан-седло». Эти детали подвергаются наибольшим ударным воздействиям при посадке клапана в седло, и работают в условиях высоких температур.

Сопряжение «клапан-седло-направляющая втулка» работает при недостаточном смазывании и высокой скорости перемещения клапана, что вызывает их интенсивное изнашивание.

Исходя из условий, в которых работают детали этой группы ГРМ, к клапанной группе предъявляются следующие требования:

  • герметичное закрытие клапанов;
  • малое сопротивление рабочей смеси и отработавшим газам при впуске и выпуске (хорошая обтекаемость);
  • минимальная масса деталей;
  • высокая прочность и жесткость;
  • высокая тепловая стойкость;
  • эффективный отвод тепла от клапана (особенно для выпускного);
  • высокая износостойкость (особенно в сопряжении «втулка-клапан»);
  • высокая коррозийная стойкость в сопряжении «седло-клапан».

Клапаны

Клапаны открывают и закрывают впускные и выпускные отверстия в головке блока цилиндров. Основные элементы клапана: головка 12 и стержень 9 (рис. 1). Головку клапана иногда называют тарелкой клапана.
Плавный переход от головки к стержню снижает сопротивление потоку газов при их истечении через газообменные отверстия. Поскольку отработавшие газы удаляются через выпускной клапан при значительном давлении, головку этого клапана обычно выполняют меньшего диаметра, чему головку впускного клапана.
Температура головки выпускного клапана бензиновых двигателей достигает 800…900 ˚С, а в дизельных двигателях – 500…700 ˚С.
Температурная нагрузка на головки впускных клапанов значительно ниже, тем не менее она приводит к нагреву тарелки клапана до 300 ˚С.

Поэтому для изготовления выпускных клапанов применяются жаропрочные сплавы и материалы, в качестве которых обычно используют жаропрочные стали с большим содержанием легирующих присадок. В целях экономии дорогостоящих жаростойких материалов выпускные клапаны изготовляют из двух частей. При этом для головки используется жаростойкий материал, а для стержня – углеродистые стали.
Головка и стержень в данном случае соединяются между собой стыковой сваркой.

Для повышения коррозийной стойкости и уменьшения изнашивания в выпускных клапанах рабочие поверхности фаски, а в некоторых случаях и поверхность головки со стороны цилиндра наплавляют слоем твердого сплава толщиной 1,5…2,5 мм (рис. 1).

klapan_1.jpg

Так как впускные клапаны омываются свежим зарядом и находятся в более легких температурных условиях, к материалу впускных клапанов предъявляются менее жесткие требования и для их изготовления используются хромистые и хромоникелевые среднеуглеродистые стали.

Обтекаемость клапана, работоспособность его фасок во многом зависит от формы головки. Для впускных клапанов чаще используют головки плоской формы (см. рис. 1 и 2), отличающиеся простотой конструкции и достаточной жесткостью. В форсированных двигателях иногда применяют впускные клапаны с вогнутыми головками (см. рис. 1, в). Такие клапаны имеют меньшую массу, чем клапаны с плоской головкой и их движение вызывает меньшие инерционные нагрузки.

Головки выпускных клапанов выполняются или плоскими (рис. 1, 2 и 3, г), или выпуклыми (рис. 3, б). Выпуклая форма головки способствует улучшению обтекаемости клапана со стороны цилиндра и повышению его жесткости, но вместе с тем увеличивается и масса клапана, что отрицательно сказывается на его инерционности.

Сопряжение между тарелкой (головкой) клапана и седлом осуществляется по фаске – специальному пояску на боковой поверхности головки. Угол наклона фаски у впускных клапанов для большинства двигателей составляет 45˚, а у выпускных – 45 и 30˚.
В процессе изготовления клапанов фаски головок шлифуют, а при установке на двигатель притирают к седлу. Ширина притертого пояска фаски для выпускных клапанов должна быть не менее 0,8 мм; для впускных клапанов допускается более узкий поясок, который, тем не менее, не должен прерываться по периметру окружности фаски.
Для обеспечения надежного контакта между клапаном и седлом по наружной кромке фаски клапана угол фаски клапана делают на 0,5…1˚ меньше угла фаски седла.

klapan_2.jpg

Коррозийный и механический износ фасок на клапане и седле резко снижает эффективность работы двигателя. На фасках выпускных клапанов в процессе работы постепенно откладывается нагар, который тоже препятствует герметичному закрыванию выпускного отверстия. Для предотвращения образования нагара на фасках выпускных клапанов и повышения их долговечности, в некоторых двигателях выпускной клапан в процессе работы принудительно проворачивается с помощью специального механизма (см. рис. 1, поз. 5).

Механизм принудительного вращения клапана (рис. 4) состоит из неподвижного корпуса 3, расположенных в углублениях этого корпуса пяти шариков 2 с возвратными пружинами 1, конической дисковой пружины 4, опорной тарелки 5 и пружины клапана 7.
Все детали в собранном состоянии скрепляются пружинным кольцом 6.

При открытии клапана от усилия пружины дисковая пружина 4, опирающаяся при закрытом клапане на буртик корпуса 3, деформируется и ложится на шарики 2, которые в это время располагаются в мелкой части углубления корпуса.
Под давлением пружины шарики перекатываются по углублению корпуса в более глубокую часть, поворачивая при этом коническую пружину 4, опорную тарелку 5, пружину клапана и сам клапан вокруг его оси.

После закрытия клапана, когда усилие пружины клапана уменьшается, коническая дисковая пружина 4 возвращается в исходное положение, при этом шарики освобождаются и возвратными пружинами 1 перемещаются в более мелкую часть углубления в корпусе 3, подготавливая механизм к следующему циклу работы.

В двигателях марок «ЗМЗ», «ЯМЗ» возможность проворачивания в процессе работы впускных и выпускных клапанов обеспечивается установкой между опорной тарелкой и сухарями промежуточной втулки (см. рис. 1, поз. 13; рис. 2, поз. 11; рис. 3, поз. 4).

Промежуточные втулки имеют небольшую контактную поверхность с подвижными опорными тарелками пружин, следовательно, трение между этими деталями невелико. Поэтому при открытии клапана вследствие вибрации всех деталей механизма клапан периодически поворачивается.

klapan_3.jpg

Ниже фаски головка клапана имеет цилиндрический поясок, который предохраняет ее от обгорания, сохраняет диаметр тарелки клапана при перешлифовке и обеспечивает жесткость головки.

Для предотвращения падения клапана в цилиндр при поломке хвостовика стержня или клапанной пружины, на его стержне может устанавливаться пружинное стопорное кольцо (см. рис. 3, д, поз. 1).

Торцы стержней (пятки клапанов), находящиеся в контакте с коромыслом или кулачком, подвергаются закаливанию. В некоторых двигателях вместо закаливания на концы стержней надеваются колпачки (см. рис. 1, поз. 21) из износостойких материалов и сплавов.

klapan_4.jpg

На стержень впускных клапанов надевают резиновый колпачок (см. рис. 3, е, поз. 5), который во время такта впуска препятствует проходу масла в камеру сгорания через зазор между стержнем и направляющей втулкой клапана.

Для предотвращения заклинивания выпускных клапанов в отверстии направляющей втулки при температурном расширении, их стержни вблизи головки выполняют несколько меньшего диаметра, чем по остальной длине.

Для крепления клапанных пружин на конце стержня выполняются одна или две выточки, в которые при сборке входят выступы сухарей 2 (рис. 3, д, е).

Для понижения температуры выпускных клапанов диаметр их головок уменьшают, а диаметр стержня увеличивают. Такое техническое решение позволяет повысить тепловую стойкость клапана, но увеличивает сопротивление потоку выпускаемых газов. Впрочем, поскольку выброс отработавших газов из цилиндра осуществляется под значительным давлением (по сравнению с давлением впуска), то этим недостатком пренебрегают.

Более эффективным является способ принудительного охлаждения выпускных клапанов. Для этого стержень выпускного клапана делают пустотелым (см. рис. 1, а, в) и заполняют металлическим натрием, который имеет низкую температуру плавления (97 ˚С). При работе жидкий натрий, нагреваясь от головки клапана, испаряется, поглощая большое количество теплоты. Поднявшись в верхнюю часть стержня, пары натрия конденсируются и передают теплоту верхней части стержня, которая работает в менее теплонапряженных условиях.

Клапанные пружины

Клапанная пружина должна обеспечивать плотную посадку клапана в седло. Она работает в условиях резко меняющихся динамических нагрузок, способных вызвать резонанс и последующую поломку пружины.
Чаще всего применяют цилиндрические винтовые пружины с постоянным шагом витков.
Для предотвращения резонансных явлений могут применяться пружины с переменным шагом, конические пружины и двойные пружины. При использовании двойных пружин возрастает надежность работы ГРМ и уменьшается общий размер пружин.
Направление витков внутренней и внешней пружин выполняют разным, чтобы исключить резонанс и, в случае поломки одной из пружин, предотвратить попадание обломков между витками второй пружины.

Клапанные пружины изготавливают навивкой проволоки из пружинной стали. После навивки пружины подвергаются термической обработке (закалка и отпуск), а для повышения усталостной прочности обдуваются стальной дробью.

Концевые витки пружин шлифуются для получения плоской кольцевой опорной поверхности. Для повышения коррозионной стойкости пружины оксидируют, оцинковывают и кадмируют.

Пружины опираются на головку блока цилиндров через специальные неподвижные тарелки (см. рис. 2, поз. 4), которые штампуются, как и верхние подвижные тарелки из малоуглеродистой стали. Верхняя тарелка пружины фиксируется на клапане с помощью сухарей.

Направляющие втулки клапанов

Направляющая втулка обеспечивает перемещение клапана и отвод теплоты от его стрежня во время работы. При этом нижний конец самой втулки (особенно выпускного клапана) омывается горячими газами. При недостаточном поступлении смазочного материала в зазоры между стержнем клапана и внутренней поверхностью втулки трение между этими деталями приближается к полусухому.
По этой причине к материалу направляющих втулок предъявляются требования высокой износостойкости, достаточной жаростойкости и хорошей теплопроводности. Кроме того, он должен обладать высокими антифрикционными качествами. Этим требованиям удовлетворяют перлитные серые чугуны, алюминиевые бронзы, спекаемая хромистая или хромоникелевая керамика. Пористая структура данных материалов хорошо удерживает смазочный материал.

Для фиксации в головке блока цилиндров втулки выполняются с выточкой под пружинное кольцо (см. рис. 3, а, поз. 1) или с наружными заплечиками.

Зазор между направляющей втулкой и стержнем клапана для впускных клапанов устанавливается меньше, чем для выпускных, из-за разной температуры нагрева. Для предотвращения заклинивания клапана во втулке при высокой температуре и перекоса (в приводе клапана непосредственно от распределительного вала) нижнюю внутреннюю поверхность втулки выполняют конусной (см. рис. 3, г) или уменьшают диаметр стержня клапана у головки (см. рис. 1, б).

Седла клапанов

Седло клапана обеспечивает долговечность контактной зоны клапана с головкой блока цилиндров. В головках из алюминиевого сплава используют стальные седла, а в чугунных головках они растачиваются непосредственно в теле (см. рис. 2, а). Для изготовления вставных седел используют специальные легированные чугуны или жаростойкие стали. Для повышения износостойкости фаски седел выпускных клапанов наплавляются слоем твердого сплава (см. рис. 1, поз. 18).

Седло представляет собой кольцо с цилиндрической или конической наружной поверхностью. Крепится седло в головке с натягом при запрессовке или путем расчеканивания головки (см. рис. 3, к). Стальные седла могут крепиться развальцовкой верхней части седла (см. рис. 3, л). При креплении седел запрессовкой на их наружной поверхности часто выполняются кольцевые проточки (см. рис. 3, з, и), которые в процессе запрессовки заполняются металлом головки.

Цилиндрические седла вставляются до упора, а конические – с небольшим торцевым зазором.

Для получения надежного уплотнения поясок седла шириной около 2 мм выполняют с переменным углом (см. рис. 3, ж).

Механизм газораспределения, служащий для управления процессами впуска воздуха в цилиндр и выпуска отработавших газов, состоит из впускных и выпускных органов газораспределения и их приводов.

image001.png

В четырехтактных дизелях применяют клапанное газораспределение (рис. 1). Для обеспечения плотной посадки клапана на седло в приводе клапана предусматривают зазор (во время работы дизеля вследствие нагревания шток клапана удлиняется), который можно регулировать болтом с контргайкой.

При набегании выступа кулачковой шайбы на ролик толкателя штанга поднимается и поворачивает клапанный рычаг относительно оси кронштейна. При этом правый конец рычага нажимает на шток клапана и открывает его, сжимая пружину. При выходе выступа шайбы из-под ролика толкателя силой упругости пружины клапан закрывается. Необходимые фазы газораспределения (моменты начала открытия и конца закрытия клапанов) и законы движения клапанов определяются профилем кулачковых шайб, углом их заклинивания, кинематической схемой клапанного привода и тепловым зазором.

В двухтактных дизелях с прямоточно-клапанной продувкой применяют клапанно-щелевое газораспределение. Для впуска воздуха в цилиндр служат продувочные окна во втулке, которые открываются и закрываются поршнем, а клапанный механизм управляет выпуском газов.

Клапан приводится в действие от кулачковой шайбы через толкатель, штангу и клапанный рычаг (рис 2). Промежуточная тарелка клапанных пружин кронштейнами соединена с клапанным рычагом, а тягами — со стойкой рычага(такое крепление тарелки повышает устойчивость пружин).

image002.png

В двухтактных дизелях с контурной и прямоточно-щелевой продувками применяют щелевое (бесклапанное) газораспределение. Органами газораспределения являются продувочные и выпускные окна во втулке и поршень, выполняющий функции золотника. У некоторых дизелей ранней постройки продувочные окна перекрыты автоматическими пластинчатыми продувочными клапанами, а выпускные окна — вращающимися заслонками.

Механические нагрузки вызываются силами действия газов на тарелку клапана, силами инерции движущихся частей, силами упругости клапанных пружин и усилием со стороны толкателя, являющимся нормальной составляющей от силы действия кулака на толкатель.

В момент начала открытия скорость клапана возрастает от нуля до максимума, силы инерции клапанного механизма направлены в сторону, противоположную движению толкателя (к распределительному валу), и прижимают ролик толкателя к кулачковой шайбе. К моменту полного открытия скорость клапана уменьшается от максимума до нуля, силы инерции имеют противоположное направление (от распределительного вала) и стремятся оторвать ролик толкателя от кулачковой шайбы, но этому препятствуют клапанные пружины. При закрытии клапана действия сил инерции и клапанных пружин будут аналогичными. Отрыв ролика от толкателя приводит к повреждению их рабочих поверхностей, ударам в клапанном механизме, разбиванию фасок клапана и седла, нарушению фаз газораспределения, поэтому сила упругости пружин должна быть всегда больше сил инерции клапанного механизма.

Клапанные пружины испытывают знакопеременную нагрузку, и их материал работает на усталость. Во время работы температура пружины возрастает на 40-50 градусов, а при совпадении частоты собственных колебаний с частотой возмущающей силы подвержена резонансу, приводящему к поломке.

Высокие термические нагрузки газораспределительных клапанов обусловлены их соприкосновением с горячими газами. Клапан воспринимает теплоту через плоскость тарелки от газов в цилиндре (около 80%) и через поверхность перехода от тарелки к штоку от выпускных газов (около 15%). Теплота отводится двумя путями: от тарелки к седлу и далее в охлаждающую воду; через шток направляющей и далее в массу металла и охлаждающую воду.

Температура тарелки впускного клапана может быть более низкой (300-400градусов), чем впускного (450-520градусов), т.к. он охлаждается воздухом в процессе наполнения, а тарелка же выпускного клапана омывается горячими газами. Высокие температуры ухудшают механические свойства материала, вызывают эрозию, коррозию, коробление и неплотное прилегание клапана к седлу, увеличивают опасность заедания штока клапана в направляющей, а иногда приводят к прогоранию тарелки.

К конструкции деталей механизма газораспределения предъявляют следующие основные требования: газораспределительные клапаны должны иметь возможно большие проходные сечения (для улучшения очистки цилиндра от газов и наполнения его воздухом), меньшие температуру и массу (для уменьшения сил инерции), материал клапанов должен быть жароупорным, износостойким, вязким и не должен закаливаться на воздухе (для предотвращения образования закалочных трещин), клапанные пружины должны быть достаточно упругими и иметь высокую усталостную прочность, клапанные рычаги, штанги и толкатели — жесткими, прочными при возможно меньшей массе (для уменьшения сил инерции).

Материал для изготовления впускных клапанов — легированная сталь 40Х, 40ХН или углеродистая сталь 40, 45; выпускных клапанов — высоколегированная сталь 2Х18Н9, ЭСХ8М или Х14Н14В. В форсированных двигателях для повышения износо- и коррозионно-стойкости фаску тарелки клапана покрывают стеллитом или нихромом, а шток клапана азотируют; седла клапанов — легированная или углеродистая сталь, сверхпрочный чугун; пружин — высокоуглеродистая сталь 65Г, 60С, 50ХФА; распределительных валов — легированная или углеродистая сталь 25, 30; кулачных шайб — легированная сталь 15ХА, 12ХНВА; для повышения поверхностной твердости шайбы цементируют или закаливают.

Распространены следующие конструкции клапанов:

Клапаны без корпуса устанавливают непосредственно в крышку цилиндра, что позволяет увеличить проходные сечения для воздуха и газов, но при этом необходим демонтаж крышки для осмотра и притирки клапанов. В четырехтактном дизеле впуск газов всегда обеспечивается выталкивающим ходом поршня, поэтому для улучшения наполнения цилиндра воздухом диаметр впускного клапана иногда увеличивают за счет уменьшения диаметра выпускного.

image003.png

В четырехтактных дизелях обычно применяют два или четыре газораспределительных клапана, а в двухтактных один, два, три или четыре выпускных клапана. Увеличение числа клапанов усложняет конструкцию цилиндровой крышки, но снижает их механическую и тепловую напряженность вследствие уменьшения диаметра и массы.

Клапан без корпуса (рис. 3) состоит из штока и тарелки с конической рабочей фаской. Чаще всего применяют фаски с углом фаски 45градусов, обеспечивающим большие жесткость клапана и плотность его посадки на седло, лучший отвод теплоты от тарелки, наиболее выгодную форму газового потока при полном открытии клапана.

При уменьшении угла фаски до нуля увеличивается проходное сечение клапана и уменьшается давление на его фаску, но резкое изменение газового потока увеличивает гидравлические потери, а более острая кромка тарелки клапана быстрее обгорает.

Фаска тарелки прижимается к седлу, протачиваемому в крышке цилиндра или к съемному седлу, фиксированному в крышке пружинящим кольцом или другими способами (запрессовкой, развальцовкой, зачеканкой). Фаску и седло тщательно притирают. Шток клапана перемещается в направляющей втулке. Клапан прижимается к седлу пружинами, упирающимися в нижнюю и верхнюю тарелки. Верхняя тарелка удерживается коническими полукольцами (сухарями) на конической шейке штока клапана (применяют и другие способы крепления). Для предотвращения разбивания торца штока в него вставляют закаленный сухарь или устанавливают колпачок.

image004.png

Клапан с корпусом (рис. 4) конструктивно сложнее, имеет меньшее проходное сечение, но удобнее в эксплуатации, т.к. возможны осмотр, притирка и замена без демонтажа цилиндровой крышки.

Для снижения тепловой напряженности клапанов применяют следующие способы:

Тарелку клапана для уменьшения тепловоспринимающей поверхности выполняют по возможности плоской и покрывают металлокерамическим сплавом; интенсивно охлаждают цилиндровую крышку в районе седла и направляющей, непосредственно седло и направляющую или направляющую, шток и тарелку клапана водой, подводимой по гибким патрубкам, сверлениям и трубке в штоке.

В современных дизелях часто предусматривают автоматический поворот клапанов относительно оси во время работы дизеля, что обеспечивает более равномерное распределение температур в тарелке и меньшую ее деформацию, равномерный износ тарелки и седла и их некоторую самопритирку. Наиболее просто это достигается установкой специальных лопаток на нижней части штока, которые под действием газового потока поворачиваются вместе с клапаном. Иногда для принудительного поворота применяют специальные устройства.

Клапанные пружины выполняют с разными направлениями витков для предотвращения попадания витков одной пружины между витками другой в случае поломки одной из них. Установка нескольких пружин на один клапан позволяет устранить их резонанс: каждая пружина имеет свой период колебаний и при попадании одной из них в резонанс другие являются гасителями колебаний. При установке нескольких пружин одновременно уменьшаются их размеры, снижаются напряжения в витках, повышается частота собственных колебаний и устойчивость пружин во время работы, повышается надежность работы клапана.

На двигатели внутреннего сгорания устанавливаются клапаны сварной конструкции:

1) – Стержень клапана (выполнен из обычной конструкционной стали);

2) – Тарелка (головка) клапана (выполнена из аустенитной стали).

Клапаны, используемые в форсированных двигателях, требуется предохранять от коррозии. Максимальный защитный эффект достигается при металлокерамическом покрытии тарелки клапана, нанесение которого осуществляется посредством напыливания с дальнейшей термообработкой. В процессе данной обработки на поверхности клапана формируется пористый слой с оксидной плёнкой. Клапаны, имеющие металлокерамическое защитное покрытие, отличаются значительно большей жаропрочностью, чем клапаны, чья посадочная фаска имеет покрытие из стелита.

Выпускные клапаны некоторых двигателей (ЗМЗ-53, ЗИЛ-130) изготавливаются полыми. Полость клапана на 50-60% заполняется легкосплавным веществом (5) [рис. 1], которое в процессе работы двигателя плавится и интенсивно взбалтывается, за счёт чего происходит более продуктивный отвод тепла от тарелки к стержню клапана и, как следствие, устраняется перегрев клапана.

konstruktivnye_formy_klapanov_i_sposoby_ih_kreplenija_ris_1.jpg

Рис. 1. Конструктивные формы клапанов и способы их крепления.

а) – Выпускной клапан форсированного двигателя;

б) – Формы тарелок клапанов:

I – Плоская тарелка клапана;

II – Тюльпанообразная тарелка клапана;

III – Выпуклая тарелка клапана;

в) – Способы крепления пружин на клапанах;

1) – Стержень клапана;

2) – Тарелка клапана;

4) – Жаропрочная наплавка тарелки клапана;

5) – Металлический натрий;

6) – Выточка для предохранительного кольца;

 Тарелки клапанов. История.

Есть у меня несколько знакомых по России, которые, так или иначе имели отношение к советскому автоспорту. И много интересных рецептов я узнал от них.  Начну издалека. Мощность двигателя, которая указана в ПТС карбюраторной Нивы – 72 лошадки, инжекторной – 80 лошадок. Это мощность эталонного двигателя. На самом деле можете смело выкидывать из этих цифр 10-15%, именно эти данные я видел на моторном стенде, на новых машинах. Мотористы и карбюраторщики старой закалки мне сказали, что с классического движка, без потери ресурса и особых  изысков, можно снять около 100 л.с. Но прежде чем это сделать, двигатель надо понемножку к этому подготавливать. В частности для установки «взрослого» распредвала, необходима доработка ГБЦ. Пружины на клапанах классики очень сильно пережаты, и при установке распредвала с высокими кулачками, просто начинают стучать витками друг о друга. Результат – разрушение. Самый простой вариант, это на несколько миллиметров «распустить» клапанную пружину, чтобы при открытии клапана на большую глубину, витки не соприкасались. Эта операция и носит название – роспуск тарелок клапанных пружин.

Устройство, принцип работы и регулировка клапанного механизма двигателя

Клапанный механизм является непосредственно исполнительным устройством ГРМ, который осуществляет своевременную подачу топливовоздушной смеси в цилиндры двигателя и дальнейший выпуск отработавших газов. Ключевыми элементами системы являются клапаны, которые также обеспечивают герметичность камеры сгорания. Они испытывают большие нагрузки, поэтому к их работе предъявляются особые требования.

Методы формирования геометрии сопряжения

Придать правильную форму клапану и седлу можно как вручную, так и на специальном станке, но при этом точность размеров будет отличаться на порядок. Наибольшую точность даёт станок для обработке сёдел и клапанов, наименьшую- ручная притирка клапана об седло при помощи абразивной притирочной пасты.

Клапана притирают при замене клапанов, а также притирают старые клапана при текущем ремонте, когда износ в пределах допустимого.

1297019706_7

Станки. Станок для притирки клапанов на самом деле ничего не трёт, он предназначен для нарезания фаски седла и клапана позволяет сделать максимально точное сопряжение за счёт жёсткой центровки. Таким образом, получается высокоточный нарезанный профиль, который даёт максимальное качество. После данной обработки не требуется больше никаких действий, просто помыть и собрать головку.

serdi_micro_2000

Ручные фрезы. За неимением возможности обработать детали на высокоточном оборудовании можно воспользоваться ручными фрезами. Они бывают разного диаметра для разных моделей двигателей. На сёдлах нарезают три фаски- под 30 и 60 градусов, а сверху них- под 45 градусов. Новые клапана в таких случаях не обрабатывают, а если используются старые, то их нужно направить или притереть.

Притирка клапанов абразивной пастой- приспособления для притирки клапанов своими руками.
Притирка поможет только в том случае, если плоскость ответных деталей- клапана и седла- совпадает и не надо ничего править, а требуется лишь убрать некоторые неровности, иначе поможет только правка фрезой. В этом случае на кромку клапана, в местах сопряжения по всему периметру наносится притирочная паста. Клапан вставляется в своё посадочное место. Далее клапан надо одновременно слегка прижимать к седлу и в то же время вращать вокруг оси, тем самым давая стираться неровностям на поверхности.

goy906ty875t7g

После притирки обязательно смойте все абразивные частицы с деталей!

Видео: притирка клапанов Daewoo Lanos

Особенности работы

Клапаны постоянно подвержены воздействиям высокой температуры и давления. Это требует особого внимания к конструкции и материалам данных деталей. Особенно это касается выпускной группы, так как через них выходят горячие газы. Тарелка выпускного клапана в бензиновых двигателях может разогреваться до 800˚С – 900 ˚С, а в дизельных 500˚С – 700˚С. Нагрузка на тарелку впускного в несколько раз ниже, но и она достигает 300˚С, что также немало.

Именно поэтому в их производстве применяются жаропрочные сплавы металлов, содержащие легирующие присадки. Также выпускные клапаны часто имеют полый стержень с натриевым наполнителем. Это делается для лучшей терморегуляции и охлаждения тарелки. Натрий внутри стержня плавится, течет и забирает часть тепла с тарелки и переносит его на стержень. Так можно избежать перегрева детали.

gazoraspredelitelnyy_mehanizm-300x144.jpg Клапанный механизм двигателя

На седле в процессе работы может образоваться нагар. Чтобы избежать этого, применяют конструкции, которые вращают клапан. Седло представляет собой кольцо из высокопрочных стальных сплавов, которое напрессовывается непосредственно на головку цилиндров для более плотного контакта.

Также для правильной работы механизма должен соблюдаться регламентированный тепловой зазор. От высоких температур детали расширяются, что может привести к неправильной работе клапана. Зазор выставляется между кулачками распредвала и толкателями путем подбора специальных металлических шайб определенной толщины или самих толкателей (стаканов). Если в двигателе применяются гидрокомпенсаторы, то зазор регулируется автоматически.

Слишком большой тепловой зазор, будет препятствовать полному открытию клапана, а следовательно, цилиндры будут менее эффективно наполняться свежим зарядом. Маленький зазор (или его отсутствие) не позволит клапанам закрыться до конца, что приведет к их прогару и снижению компрессии в двигателе.

Количество клапанов

В классическом варианте четырехтактному двигателю для работы достаточно иметь по два клапана на каждый цилиндр. Но к современным моторам предъявляются все большие требования по мощности, расходу топлива и экологичности, поэтому для них этого уже становится недостаточно. Поскольку чем больше клапанов, тем более эффективно происходит наполнение цилиндра свежим зарядом. В разное время на двигателях пробовались следующие схемы:

  • трехклапанные (впуск – 2, выпуск – 1);
  • четырехклапанные (впуск – 2, выпуск – 2);
  • пятиклапанные (впуск – 3, выпуск – 2).

Лучшее наполнение цилиндров и их очистка обеспечиваются при использовании большего числа клапанов на один цилиндр. Но при этом усложняется конструкция двигателя.

На сегодняшний день наиболее популярными являются моторы с 4 клапанами на цилиндр. Первые такие двигатели появились еще в 1912 году на автомобиле Peugeot Gran Prix. Тогда широкого применения данное решение не получило, но начиная с 1970 года начали активно выпускаться серийные автомобили с таким количеством клапанов.

Втулки клапанов и их направляющие

Отвод тепла от стержня клапана и его перемещение в возвратно поступательной плоскости обеспечивают направляющие втулки. В процессе работы сами втулки подвергаются воздействию высоких температур, омываясь горячими отработанными газами. При возвратно поступательном движении клапана между ним и поверхностью втулки возникает трение. Если смазки поступает не достаточно, то трение идёт практически на сухую.

Именно по этой причине к материалу втулок применяют ряд требований, таких, как: стойкость к износу, высоким температурам, трению. Некоторые составы чугуна, алюминиевая бронза, керамика обладают всеми свойствами, необходимыми для создания детали, удовлетворяющей таким требованиям.

Для впускных клапанов, в связи с разницей в температуре нагрева, зазоры между направляющей втулкой и стержнем делаются меньше. Нижнюю часть втулки делают под конус для предотвращения заклинивания клапана.

Направляющие втулки клапанов

 Как это было на оригинале

Теперь абзац специально для «умников, умниц и Д’Артаньянов», кто скажет что все это ерунда и на заводе не дураки сидят. Когда то давно, я купил у деда «копейку» ради того чтобы посмотреть на оригинал нашей классики. Самые первые двигатели, которые предложили итальянцы, как известно из истории были нижневальные. А уже после них пошло верхневальное семейство. На “дедовском” движке, объемом 1,2л, очень много где стояли клейма отнюдь не автоТАЗа. Те же надписи обнаружились позднее на шестернях редукторов, КПП и.т.д. Номер на шильде машины был несколькими нулями в начале. Было чему удивиться. Применительно к тарелкам: они были расточены так, как я вам рассказываю. Роспуск около 2-3 мм.

Вопрос. Имеет ли смысл поставить «просто так» доработанные тарелки клапана и почему?

Ответ. Тарелки, которые идут на наших двигателях с завода, имеют очень очень грубую обработку. Как они выходят из под штампа, так и идут на сборку, не обрабатывается даже посадочный конус под сухари клапана. Результат, тарелка не «сидит» по плоскости клапанной пружины, а работает частью плоскости, что постепенно приводит к деформации сухарей и разрушению узла клапан-сухари-тарелка. Как следствие, биение клапана, разбивание направляющей и повышенный расход масла.

Рекомендация.  Замену тарелок клапанов имеет смысл произвести совместно с заменой маслосъемных колпачков.

Статьи в тему:  титановые тарелки клапанов

маслосъёмные колпачки

Выточки под клапана (седла)

Долговечность и правильная работа двигателя внутреннего сгорания напрямую зависят от качества изготовления выточки под клапана. При неправильной стыковке клапана и седла не будет обеспечиваться должная герметичность камеры сгорания, и скорый выход мотора из строя неизбежен. Седла изготавливают непосредственно в головке цилиндра, в данном случае речь идёт о чугунных головках. Либо делают их вставными, из стали, например, в алюминиевых головках.

Вставные седла удерживаются в головке путём запрессовки, или развальцовки.

Стук при работе

Основной неисправностью клапанов (не считая прогара) считается появляющийся стук на холодном или горячем двигателе. Стук на холодном двигателе исчезает после набора температуры. Когда они разогреваются и расширяются, тепловой зазор закрывается. Также причиной может стать вязкость масла, которое не поступает в нужном объеме в гидрокомпенсаторы. Загрязнение масляных каналов компенсатора также может вызывать характерный стук.

На горячем двигателе клапана могут стучать из-за низкого давления масла в системе смазки, загрязнения масляного фильтра или неправильного теплового зазора. Также следует учитывать естественный износ деталей. Неисправности могут быть в самом клапанном механизме (износ пружины, направляющей втулки, гидротолкателей и т.д.).

Сколько тереть?

Как понять, когда клапан притёрт? Есть несколько способов

  • проверка воздухом
  • керосин
  • карандаш

Лучше всего показал себя вакуум-тестер, что и неудивительно, ведь принцип работы вакуум-тестера схож с процессами, протекающими в двигателе. В двигателе газы прорываются сквозь щели, что мы этим тестом и проверим.

Проверка клапанов

Прибор присоединяется поочерёдно ко всем отверстиям- со стороны впускного и выпускного коллектора и создаётся вакуум. Если клапана плохо притёрты, то будет недостаточное разряжение на манометре, так как через клапаны прорывается воздух. Такого не должно быть.

Другим способом проверки, который доступен в любом гараже, является проверка керосином. Клапана вставляются на свои места, головку ложат камерой сгорания вверх, а сверху заливают керосином. По приданию, если за ночь керосин весь не вытечет (или если совсем не вытечет? Ходят разные мнения), то клапана притёрты правильно. Но нестыковка в том, что двигателю нет никакой разницы, прольётся керосин или нет, через сопряжения воздух может как прорываться, так и нет, поэтому данным методом проверки можно пренебречь.

Ещё один простой способ- проверить на равномерность распределения маркирующего вещества. На рабочей кромке седла клапана рисуют радиальные риски по всей окружности. Потом вставляют клапан, прижимают и делают вращательные движения. Потом клапан вынимают и смотрят, какой образовался узор: если риски стёрлись и закрашена вся поверхность седла равномерно, то нормально, может работать, если есть какие-то неровности- продолжаем притирку.

Притирка клапанов

Почему руками плохо?

Минус такой обработки- качество, что значительно влияет на надёжность. Обычно после данного вида обработки двигатель проходит 10-20 000 км, а потом снова надо ремонтировать. Но и этот пробег двигатель будет работать неустойчиво- прорыв газов неизбежен. Это обусловлено тем, что невозможно правильно отцентровать клапан относительно седла при притирке. Поэтому, если есть возможность обработать деталь на профессиональном оборудовании, не стоит искать халявы и делать механическую обработку «на коленке», не забывайте- «Краилово-ведет к попадалову»(с).

Устройство автомобилей

Детали клапанной группы

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...