Что делают из нефти

Как делают бензин в промышленности

Для производства используется чистая нефть, добытая из недр земли или шельфа. В ее составе пара основных составляющих: около 85% углерода и примерно 15% водорода. В процессе их соединения получаются углеводороды, на которых основан процесс прямой перегонки для создания бензина в промышленности. Таких процессов может быть несколько, и каждый из них основан на различных технологиях. Однако наиболее распространённые среди них — это платформинг, крекинг, термический или каталитический.

На заре освоения нефтепродуктов человеком прямая перегонка была простейшим химическим процессом, который при желании каждый может освоить у себя на дому. Она основана на нагревании нефти, в процессе которого из нее испаряются отдельные составляющие и получаются разные нефтепродукты. Сырье помещается в закрытую ёмкость, к которой подведена газоотводящая трубка. Как сделать бензин из нефти? Просто подогреть её до следующих температур:

  • бензин конденсируется через трубку от 35 до 200 градусов по Цельсию;
  • керосин выделяется при температурах от 150 до 305;
  • дизельное топливо начинает образовываться в диапазоне 150-360 градусов.

После этого останется изолировать полученный конденсат в отдельной ёмкости и охладить его. Но при кажущейся простоте процесса он не дает достаточно много горючего, а, значит, характеризуется малой экономической эффективностью. Выход готовых нефтепродуктов с 1 литра сырья не превышает 150 мл. Кроме того, октановое число будет очень маленьким — не более 50-60 единиц, а такое горючее сейчас не применяется. Чтобы повысить его значение, придётся добавлять множество присадок, что сделает производство ещё более невыгодным. На основе такого процесса получения бензина из нефти создать промышленное производство не получится.

Процесс так называемой «прямой перегонки» нефтесырья известен как основной метод, который широко применяется в современной промышленности. Это не что иное, как разделение сырья на отдельные фракции, которые отличаются одна от другой по характеристикам. Процесс прямой перегонки нефти для создания бензина при её переработке выглядит вкратце следующим образом: нефть нагревается, после чего выделяются её пары. Их, а также конденсат отбирают по отдельным емкостям. Таким образом, удаётся получить топливные дистилляты и мазут, из которого впоследствии производят смазочные материалы.

Для этих целей промышленность использует установки непрерывного действия, в которых испарение с дальнейшим разделением дистиллятов на фракции составляет единый технологический процесс. Дальше пары конденсируются и превращаются в жидкий бензин. Его выход в процессе перегонки может достигать 3-15% от изначального объема используемого сырья.

Современная промышленность использует каталитический и термический крекинг нефти. Первый метод получил широкое распространение ещё с начала 20-го века. Суть его заключается в расщеплении сырья на отдельные фракции с меньшей молекулярной массой. В числе таких фракций выступают отдельные виды нефтепродукции: бензин, масло, керосин, дизтопливо и пр. После формирования более легких фракций остаются самые устойчивые, температура горения которых достигает уже 350 градусов.

Цистерны

Полученный при помощи крекинга бензин отличается более высокими качествами по сравнению с тем, что добывают путем прямого перегона. Связано это с тем, что в нём сохраняется больше разновидностей углеводородов. Охарактеризовать оба крекинга можно следующим образом:

  • термический — расщепление происходит вследствие воздействия высокой температурой (до 550 градусов Цельсия);
  • каталитический — разделение происходит благодаря присутствию катализаторов в процессе.

Второй метод считается более прогрессивным — таким способом вырабатывают горючее с высоким октановым числом. Гарантируется более глубокое и повышенной качество нефтепереработки. В качестве основного сырья для каталитического расщепления используют вакуумный газойль, а прочие виды сырья требуют предварительной подготовки. Базовым катализатором проведения процесса крекинга выступают алюмосиликаты.

При термическом крекинге важнейшими условиями технологии являются рабочая температура, длительность реакции и уровень давления. Этим методом обрабатывают нефтепродукты с меньшими молекулярными массами. К примеру, это может быть кокс или некоторые виды моторного топлива. Чтобы добиться на выходе качественных полимерных продуктов, важно обеспечить смену значений давления, чтобы иметь возможность оперативно влиять на проходящие вторичные реакции. Кроме крекинга термического и каталитического известны еще окислительный и электрический крекинги.

Сколько топлива можно получить из барреля сырой нефти

Один баррель содержит 159 литров. При переработке этого объёма количество нефти увеличивается до 168 литров, из чего можно произвести:

  • 102 литра бензиновой смеси;
  • 30 л дизельной;
  • 25 л авиационного топлива;
  • 11 л нефтезаводского газа, получаемого после перегонки;
  • 10 л нефтяного кокса — вторичный продукт;
  • 5,6 л мазута, который используется для отопления дома или питания кораблей, локомотивов и генераторов;
  • 4,5 л сжиженного газа;
  • Полтора килограмма древесного угля;
  • 12 баллонов газа пропан;
  • Литр моторного масла.

Маркировка бензина

Какие химические свойства бензина используются при его продаже потребителям? Для работы бензина в качестве моторного топлива важны:

  1. Испаряемость.
  2. Воспламеняемость и, как следствие – способность к горению.
  3. Образованию отложений (нагара) – которых должно быть как можно меньше.
  4. Коррозионная активность.
  5. Способность к детонации.

Маркировка бензинов из продающихся на заправках в России сейчас такова: АИ-92, АИ-95 и АИ-98. Выпускаемые раньше для грузовых траков А-72 и АИ-80 в соответствии с переходом на евростандарты сняты с производства из-за их большого количества токсичных веществ, входящих в состав бензина и в продуктах выхлопа.

Что же означают буквы «А» и «И» в названии топлива?

Метод определения октанового числа – моторный, обозначается литерой «А», и/или исследовательский, обозначаемый «И». При моторном методе измеряют детонационные свойства воздушно-бензиновой взрывоопасной смеси, поступающей из карбюратора или инжекторов в камеру сгорания, притом на нормальных режимах работы мотора. При исследовательском – на предельных, форсированных или просто повышенных оборотах и нагрузках. Так как исследования проводятся обоими методами, маркировка бензинов использует обе литеры – «АИ»

Октановое число топлива

Ещё один показатель, с которым приходилось сталкиваться каждому водителю, это так называемое «октановое число». На бензоколонках можно увидеть различные числа, например, 76, 92, 95 и так далее. Главным определением этого понятия является сопротивляемость горючего к детонации. Чем более высоким оно будет, тем длительнее будет процесс возгорания, а, значит, тем больше можно сжать топливо перед воспламенением. Это повышает его эффективность, поскольку в таких случаях от топлива можно получить больше энергии.

Выпускаются автомобильные двигатели, которые специально рассчитаны на бензин, который можно долго сжимать, без риска его взрыва. Процесс этот осуществляется прямо в камерах сгорания. Такое топливо принято называть высокооктановым и получают его на промышленном производстве бензина путем добавления в него специальных присадок.

Нефтепереработка

Замерить октан-число можно при помощи специального измерительного устройства, которое называется октанометром. Однако этот показатель будет только приблизительным. Для профессионального замера необходимы лабораторные исследования. Это может осуществляться одним из 2-х методов:

  • исследовательским, при котором топливо сравнивается по его показателям с эталоном;
  • моторным — в этом случае используется одноцилиндровый силовой агрегат внутреннего сгорания, который может изменять степень сжатия.

Как может влиять октановое число при производстве бензина в нефть на показатели работы двигателя? Бензин с небольшим числом будет воспламеняться быстрее, а это приводит к его повышенному расходу и малой эффективности движка. Противоположными качествами обладает топливо с высоким числом октана: КПД мотора возрастает, расход снижается, хотя и незначительно. Многое зависит от расчетных значений, на которые предназначен тот или иной силовой агрегат. Если автомобиль, к примеру, рассчитан на 95-й бензин, а его заправили 92-м, то потребление горючего будет выше. В обратной ситуации автолюбитель не получит никакого ощутимого выигрыша.

Для того чтобы понимать целесообразность использования более дорогого высокооктанового горючего, можно обратить внимание на такой показатель как уровень сжатия двигателя. Нет смысла заправляться высокооктановым топливом, если автомобиль не рассчитан на него конструктивно. Единственным следствием станет перенастройка системы впускных и выпускных газов.

Технологии производства бензина, повышения его характеристик, непрерывно совершенствуются. Они необходимы ещё и потому, что производители автомобилей разрабатывают более инновационные, экономичные двигатели, которые требуют для своей работы эффективного топлива.

Нефть в нашей жизни

Как мы видим, нефть – неотъемлемая часть нашей повседневной жизни. С помощью нее мы получаем тепло, водим машины, запускаем самолеты и подводные лодки, почти все синтетические продукты в наше время имеют компоненты нефти в своем составе (возьмите, к примеру, пластик, все моющие средства, краски и даже некоторые лекарства).

Наша жизнь без нефти? Пока это кажется невозможным. Ежегодно, например, Германия тратит 18 миллионов тонн нефти на производство синтетических тканей.

Из нашей статьи вы узнали, какие продукты сделаны из нефти или имеют продукты нефтехимии в своем составе. Мы также постарались наглядно показать, что делают из нефти, какие этапы переработки проходит “черное золото”.

Получение газового бензина

При извлечении углеводородов при переработке газов происходит их отбензинивание при помощи твердых сорбентов. Необходимо повысить поглощение активированным углем удельного количества углеводородов. Для этого в уголь добавляют растворитель типа толуола с дималеинимидом (0,1-1%). Затем через слой угля пропускают попутный или природный газ.

На специфически обработанном в течение 2 часов угле происходит удельное поглощение тяжелых углеводородов. Через насыщенный сорбент пропускают пар в таком же направлении, что и газ для отбензинивания. После чего сорбент сушат и используют в следующих циклах. Газоконденсат сепарируют. Это автоматически приводит к получению стабильного газового бензина.

Стоимость производства бензина из газа снижается за счет предварительной обработки сорбента и увеличения его поглотительного свойства больше чем на 50%. Это позволяет отказаться от применения пропускаемого через уголь стабильного вещества или уменьшить его количество. Уменьшаются затраты по использованию колонн и оснащенности аппаратурой.

Характеризация физико-химических свойств (ФХС) узких нефтяных фракций (псевдокомпонентов)

При расчете процессов ректификации многокомпонентных смесей (МКС) необходимо использовать физико-химические и термодинамические свойства всех компонентов, составляющих разделяемую МКС. Поскольку в рассматриваемом случае декомпозиция исходной непрерывной смеси на псевдокомпоненты носит достаточно условный характер, процедура расчета физико-химических свойств отдельных псевдокомпонентов приобретает особое значение.

Известно [2], что любое химическое вещество обладает совокупностью характеристических констант, причем значения характеристических констант зависят от химического строения молекул вещества. Это положение может быть распространено и на псевдокомпоненты, особенно если значения характеристических констант определены экспериментально.

В качестве основной и минимально необходимой характеристики псевдокомпонента принята его среднеарифметическая (между началом и концом выкипания фракции) температура кипения.

Однако, эта температура не в полной мере характеризует псевдокомпонент, поскольку она не учитывает особенности состава нефтей различного типа (различных месторождений). Для более точной оценки ФХС псевдокомпонентов необходима информация об углеводородном составе фракций.

Эта информация в косвенной форме в кривых ОИ и ИТК содержится. Более того, по закону сохранения масс усредненные (среднеинтегральные) значения псевдохарактеристических констант и вероятного углеводородного состава для фракций, выделенных по сравниваемым кривым  при одинаковых расходных пределах выкипания, должны совпадать (за исключением их температурных пределов выкипания) [2].

Поэтому для оценки углеводородного состава моторных топлив вполне допустимо использование кривой ОИ – как более простой и удобной при экспериментальном определении. Однако при расчете процессов разделения (прежде всего ректификации) необходимо использовать только кривую ИТК.

Для расчетов в качестве псевдохарактеристических констант всех компонентов (псевдокомпонентов) МКС используются стандартные свойства (температуры кипения, температуры фазовых переходов, давления насыщенных паров, плотности газовой и жидкой фаз при стандартных условиях, показатели преломления, вязкости, энтальпий и др.), а также критические свойства. Эти константы характеризуют химическую индивидуальность компонента, т.е. представляют «химический паспорт» вещества. Характеристические свойства являются функциями специфических химических параметров вещества: молярной массы и структуры молекулы вещества [2]:

Фij=f(Мi, химическая формула). (1.1)

Из (1.1) следует, что все стандартные свойства оказываются взаимосвязанными и могут быть выражены друг через друга. Так молярная масса какого либо углеводорода (псевдокомпонента) может быть выражена в виде функции от его стандартных свойств: температуры кипения, плотности, показателя преломления и прочих свойств, а также от комбинации этих свойств. В качестве примера можно привести формулы Б. П. Войнова [3], Крега [4] и Мамедова [4] для расчета молекулярной массы углеводородов:

Формулы для расчета молекулярной массы углеводородов

Поэтому количество вариантов расчета ТФС псевдокомпонентов оказывается достаточно большим, что в определенной мере затрудняет их практическое использование.

Для расчета ФХС широких нефтяных фракций, состоящих из нескольких псевдокомпонентов, используется правило аддитивности, т.е. вклад каждой узкой фракции в свойства более широкой фракции определяется относительной концентрацией узкой фракции в более широкой.

В УМП процедуры расчета ФХС для непрерывных смесей автоматизированы: пользователь в соответствии с принятой температурной разбивкой кривой ИТК на псевдокомпоненты задает пределы выкипания отдельных псевдокомпонентов (отдельных узких фракций), после чего заполняет спецификацию для каждого выбранного псевдокомпонента, задавая его характеристические свойства, известные пользователю.

В качестве минимально необходимой информации, как уже указывалось, должна быть задана средняя температура кипения псевдокомпонента, а в качестве дополнительной задаются свойства (плотность, показатель преломления и т.д.), известные пользователю. Чем более полно определена эта информация, тем точнее будет охарактеризован каждый псевдокомпонент, а значит, и точнее будут результаты последующего моделирования. Для примера на рис. 1.7 приведены кривые распределения характеристических свойств (tср, p, n) для прямогонного гидроочищенного бензина [2].

Что делают из нефтиРис. 1.7. Кривые распределения температуры кипения (tср), плотности (p) и показателя преломления (n) фракции прямогонного гидроочищенного бензина

В соответствии с принятым условием достаточно плавного изменения характеристических свойств при изменении температуры кипения отдельных компонентов (число индивидуальных компонентов очень велико) зависимости всех свойств от доли отгона вещества (или от температуры отгона) должны быть также непрерывными.

На основе данной информации могут быть рассчитаны все основные свойства (Tкр, Pкр, Zкр, энтальпийные характеристики) как отдельных псевдокомпонентов, так и среднеинтегральные значения этих свойств для фракции в целом, а также определены вероятные брутто-формулы гипотетических псевдокомпонентов [2].По сути такой же подход используется и при взаимном пересчете кривых ОИ и ИТК.

При этом наличие даже неполной информации (только отдельных свойств для отдельных фракций даже в ограниченном диапазоне изменения доли отгона) позволяет заметно повысить адекватность обобщающей информации. Так, для примера, приведенного на рис. 1.4, учет только одного свойства по фракции в целом (плотность мазута) заметно уточняет вид конечной характеристики (кривая ИТК).

Октановое число топлива

Чем больше показатель ОЧ, тем более безопасным для топливной системы является бензин. Горючее очень плохого качества создаёт риск взрыва двигателя. Для повышения октанового числа используются дополнительные компоненты:

  • Спирты;
  • Эфиры;
  • Алкилы;
  • Присадки, повышающие стойкость к замерзанию.
Бензин

Повышается октановое число разными способами

Ранее также использовался тетраэтилсвинец. Он отлично справлялся с работой, но негативно влиял на здоровье водителей и природы в целом, оседая в лёгких и вызывая рак. Разрешённые присадки позволяют создавать безопасное как для двигателя, так и для экологии топливо как в лаборатории, так и самостоятельно.

Другие показатели. Октан – это ещё не всё!

С соотношением изооктана и гептана, влияющим на антидетонационные качества бензина, вроде всё ясно. От чего же ещё зависит эффективность сгорания топлива под названием «бензин»?

У сложных углеводородов, входящих в его состав, разная степень испаряемости и закипания, а эти показатели напрямую влияют на работу мотора. Качество бензина как раз и зависит от соотношения фракций, закипающих при разной температуре. Различия в составе всех АИ и Евро, таким образом, обусловлены процентным соотношением легко-  и трудно- закипаемых фракций.

Для чего вводятся такие фракции в состав бензина? Если не вдаваться в тонкости термодинамики и процентного химического состава топлива, то картина складывается следующая:

  • Закипающие при низкой температуре (от 27⁰С) служат для первичного воспламенения при пуске холодного двигателя;
  • Кипящие до 100⁰С – для стабильной работы мотора при движении;
  • Кипящие до 200 градусов на конечной стадии движения и при выключении мотора – чтобы он не продолжал работать даже при выключении зажигания за счёт того, что части двигателя раскалены (калильное зажигание).

Кроме того, различаются также и виды бензинов. Они бывают этилированные и неэтилированные. Вторые – без этилсвинцовых добавок. Но главное, пожалуй, отличие видов бензинов – это авиационные и автомобильные.

Риформинг

Высокотехнологический процесс, который используется для получения высококачественного бензина и прочего топлива, а также ароматических углеводородов. Он является очень сложным, но принцип таков: нефть разделяют на составляющие части с помощью химических реакций, уменьшая в ней количество воды и избавляясь от тех или иных соединений, делая смесь более простой, что и образует топливо.

ustanovka-dlya-riforminga-nefti.jpg

Преимущества риформинга:

  1. Высокий КПД — бензина на выходе получается до 40–50% от первоначального объёма нефти. Это в среднем в три раза более эффективно, нежели перегонка. Так, из барреля получается около 80 литров горючего, что позволяет рациональнее расходовать ограниченную в количестве нефть.
  2. Более высокое октановое число, достигающее 80 единиц. Разумеется, такой бензин не может быть использован сразу, но он требует меньшего количества присадок, что позволяет сократить расходы при производстве, а сам бензин сделать более качественным и «натуральным».

Современные специалисты в области обработки нефти стремятся прийти к полному отказу от использования присадок. Для этого разрабатываются технологии вроде крекинга, платформинга и прочих.

Недостаток способа в плане производства бензина самостоятельно лишь один. Этот процесс является очень сложным, требуя точного контроля и серьёзной подготовки — оборудования и знаний.

Блок: 5/9 | Кол-во символов: 1327
Источник: https://carsbiz.ru/raznoe/benzin-iz-nefti.html

Коротко об авиационном бензине

Авиационный бензин – это топливо, используемое для поршневых авиационных двигателей. Не для реактивных самолётов – там в качестве топлива используют авиационный керосин.

Особенность авиационного двигателя, в отличие от автомобильного, в том, что в большинстве случаев используется принудительный впрыск топлива в цилиндры двигателя.

Маркировка авиабензинов производится, в отличие от автомобильных АИ,  литерой «Б». На данный момент в России взамен ранее выпускавшихся бензинов Б-91-115 и Б-95-139  разработан и пошёл в серию универсальный бензин Б-92, в котором отсутствует показатель «сортность на богатой смеси», что позволило наряду с нормальной работой  на всех режимах расширить ресурсы двигателей и значительно уменьшить содержание в бензине тетраэтилсвинца.

заправка самолета керасином
Кроме топливного Б-92 в России выпускается и авиационный Б-70, но используют его чаще всего в качестве бензинового растворителя в производстве и для бытовых нужд.

Послесловие

Если использовать не нефтяные ресурсы в качестве источника для получения топлива, то перспективы как экологии, так и самого наличия топливно-энергетического комплекса выглядят не столь удручающе, как это есть на сегодняшний момент.

В качестве альтернатив могут быть использованы технологии переработки сжиженных газов, растительных масел из ряда непищевых сортов, спирты на основе этилового, но главное – водород, не оставляющий после себя СО и СО2.

Отдельное направление – создание экономичных  и компактных аккумуляторов и электродвигателя, работающего в паре с ними.

Пока что идёт химическое совершенствование бензинов, ужесточение экологических требований к ним, но, как следствие – увеличение цены. Что вкупе с увеличением численности народонаселения планеты и доступ всё большего числа людей всех континентов к благам цивилизации, к которым, несомненно, относится и всеобщая автомобилизация – перспективы отрасли остаются неопределёнными.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...