Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя :: SYL.ru

Что такое роторно – поршневой двигатель внутреннего сгорания? Конструкция, плюсы и минусы использования РДП

Конструкция[править | править код]

Wankel engine scheme.svg

Цикл двигателя Ванкеля: впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый)

Роторно-поршневой двигатель

Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй — статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх радиальных уплотнений.

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырёхтактного поршневого, а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот эксцентрикового вала двигатель выполняет один рабочий цикл, что эквивалентно работе двухтактного поршневого двигателя. За один оборот ротора эксцентриковый вал выполняет 3 оборота и 3 рабочих хода, что приводит к ошибочным сравнениям роторного двигателя с шестицилиндровым поршневым двигателем.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.

Автомобили с РПД потребляют от 7 до 20 литров топлива на 100 км, в зависимости от режима движения, масла — от 0,4 л до 1 л на 1000 км.

Рабочий цикл[править | править код]

Двигатель Ванкеля использует четырёхтактный цикл:

  • такт A: Топливно-воздушная смесь через впускное окно поступает в камеру двигателя
  • такт B: Ротор вращается и сжимает смесь, смесь воспламеняется электрической искрой
  • такт C: Продукты горения давят на поверхность ротора, передавая усилия на цилиндрический эксцентрик
  • такт D: Вращающийся ротор вытесняет отработанные газы в выпускное окно.

Несмотря на схожесть цикла, динамика сгорания топливно-воздушной смеси в роторно-поршневом двигателе (РПД) сильно отличается от традиционного поршневого двигателя.

В поршневом двигателе (ПД) топливно-воздушный заряд, проходя в цилиндр через клапан на стадии впуска, приобретает высокую турбулентность, которая возрастает с ростом числа оборотов коленчатого вала, что благоприятно сказывается на полноте сгорания смеси. В РПД турбулентность ниже и в момент воспламенения, основной заряд смеси впереди по вращению ротора быстро сгорает, в то время как задняя часть рабочей полости остается не сгоревшей и выбрасывается в атмосферу. Этим объясняется в 6 – 8 раз более высокий процент выбосов в атмосферу несгоревших углеводородов, по сравнению с поршневыми двигателями.

Еще одним отличием рабочего цикла РПД от рабочего цикла ПД является сдвиг момента максимального выделения тепла в камере сгорания на линию расширения после прохождения верхней мертвой точки. Поэтому максимальные температуры цикла, при одинаковой степени сжатия, у РПД ниже, а в фазе выпуска температура отработавших газов на 200 – 250 °С выше чем у поршневых двигателей. Это термодинамически невыгодно и приводит к дополнительному снижению КПД, но в тоже время, по этой причине выброс окиси азота у РПД на 20% ниже, а при одинаковых степенях сжатия, РПД способен работать без детонации на топливе с октановым числом на 15 единиц меньше чем поршневой двигатель.

Устранение недостатков РПД добиваются усложнением систем впрыска, созданием расслоения топливно-воздушной смеси в камере сгорания и т.п.[3]

История создания

Самым первым тепловым двигателем роторного типа принято считать эолипил. В первом веке нашей эры его создал и описал греческий механик-инженер Герон Александрийский.

Конструкция эолипила довольна проста: на оси, проходящей через центр симметрии, расположена вращающаяся бронзовая сфера. Водяной пар, используемый как рабочее тело, истекает из двух сопел, установленных в центре шара друг напротив друга и перпендикулярно оси крепления.
Геронов шар (элеопил)
Механизмы водяных и ветряных мельниц, использующих в качестве энергии силу стихии, тоже можно отнести к роторным двигателям древности.

Что представляет собой роторный двигатель Ванкеля

Это простой по техническому решению силовой агрегат. Вместо нескольких поршней с кольцами и шатунами, он имеет один треугольный ротор, посаженный на вал. При этом вал не коленчатый, а эксцентриковый. Камеры сгорания расположены равномерно поочередно по всему кругу вращения ротора.

rotor-dvigРоторный двигатель

В роторном ДВС в 2 с лишним раза меньше деталей в сравнении с поршневым вариантом. Нет головки блока цилиндров с системой клапанов в её привычном виде и самой поршневой группы. Значительно меньше вес и габариты.

В настоящее время известно 5 разных типов роторных ДВС. Между собой они имеют существенные конструктивные отличия. Но главный принцип един для всех типов – ротор на эксцентриковом вале вместо поршней на кривошипно-шатунном механизме.

Роторный двигатель: принцип работы

Роторный двигатель: принцип работы. Плюсы и минусы роторного двигателя - фото 1

  • Роторный двигатель: принцип работы
  • Устройство и принцип работы
  • Строение роторного двигателя
  • О системе смазки и питании
  • Плюсы
  • Минусы

Преимущества и недостатки[править | править код]

Преимущества перед поршневыми двигателями:

  • низкий уровень вибраций: двигатель полностью механически уравновешен, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей, мотокаров и юникаров;
  • высокие динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более);
  • высокая удельная мощность (л. с./кг) в силу того, что:
  • масса движущихся частей в РПД гораздо меньше, чем в аналогичных по мощности поршневых двигателях, так как в его конструкции отсутствуют коленчатый вал и шатуны;
  • однороторный двигатель выдаёт мощность в течение трёх четвертей каждого оборота выходного вала. В отличие от четырёхтактного поршневого двигателя, который выдаёт мощность только в течение одной четверти каждого оборота выходного вала (современный серийный РПД с объёмом рабочей камеры 1300 см³ имеет мощность 220 л. с., а с турбокомпрессором — 350 л. с.);
  • меньшие в 1,5—2 раза габаритные размеры;
  • меньшее число деталей (два-три десятка вместо нескольких сотен).

За счёт отсутствия преобразования возвратно-поступательного движения во вращательное двигатель Ванкеля способен выдерживать гораздо большие обороты по сравнению с традиционными двигателями. Роторно-поршневые двигатели обладают более высокой мощностью при небольшом объёме камеры сгорания, сама же конструкция двигателя сравнительно мала и содержит меньше деталей. Небольшие размеры улучшают управляемость, облегчают оптимальное расположение трансмиссии (развесовка) и позволяют сделать автомобиль более просторным для водителя и пассажиров.

Недостатки:

  • Соединение ротора с выходным валом через эксцентриковый механизм, являясь характерной особенностью РПД, вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой приводит к дополнительному износу и нагреву двигателя. В связи с этим возникает повышенное требование к периодической замене масла. При правильной эксплуатации периодически производится капитальный ремонт, включающий в себя замену уплотнителей. Ресурс при правильной эксплуатации достаточно велик, но не заменённое вовремя масло неизбежно приводит к необратимым последствиям, и двигатель выходит из строя.
  • Состояние уплотнителей. Площадь пятна контакта очень невелика, а перепад давления очень высокий. Следствием износа уплотнителей являются высокие утечки между камерами и, как следствие, падение КПД и токсичность выхлопа. Проблема быстрого износа уплотнителей на высокой скорости вращения вала была решена применением высоколегированной стали.
  • Склонность к перегреву. Камера сгорания имеет линзовидную форму, то есть при маленьком объёме у неё относительно большая площадь. При температуре горения рабочей смеси основные потери энергии идут через излучение, интенсивность которого пропорциональна четвёртой степени температуры; с точки зрения снижения удельной поверхности и за счёт этого потерь теплоты идеальная форма камеры сгорания — сферическая. Лучистая энергия не только бесполезно покидает камеру сгорания, но и приводит к перегреву рабочего цилиндра.
  • Меньшая экономичность на низких оборотах по сравнению с поршневыми ДВС. Устраняется отключением работы каждого n-го поршня, что также влечёт снижение температурной нагрузки.
  • Высокие требования к геометрической точности изготовления деталей двигателя делают его сложным в производстве — требуется применение высокотехнологичного и высокоточного оборудования: станков, способных перемещать инструмент по сложной траектории эпитрохоидальной поверхности камеры объёмного вытеснения.

Применение[править | править код]

Двигатель разрабатывался изначально именно для применения на автотранспорте. Первый серийный автомобиль с роторным двигателем — немецкий спорткар NSU Spider.

Первый массовый (37204 экземпляра) — немецкий седан бизнес-класса NSU Ro 80. Автомобиль имел достаточно инноваций и помимо двигателя, в частности, кузов с рекордно низким аэродинамическим сопротивлением, полуавтоматическую коробку передач с гидротрансформатором, блок-фары, и так далее. Ro 80 отличалась не только уникальной конструкцией, но и передовым дизайном, который оказался непонятен публике середины шестидесятых (см. NSU Ro 80); через десять лет именно он был положен в основу стиля моделей «Ауди» 100 и 200 поколения C2.

К сожалению, ресурс двигателя оказался весьма мал (ремонт требовался уже после пробега порядка 50 тыс. км), поэтому автомобиль заслужил плохую репутацию и стал скандально известен. На многих сохранившихся автомобилях оригинальный двигатель заменён на поршневой L4 «Essex» фирмы Ford.

Citroën также экспериментировал с РПД — проект Citroën M35.

После этого серийное и мелкосерийное производство роторно-поршневых двигателей Ванкеля производились только фирмами Mazda (Япония) и ВАЗ (СССР)[4].

Современное состояние[править | править код]

Инженерам фирмы Mazda, создавшим роторно-поршневой двигатель «Renesis» (производное от слов (англ. Rotary Engine:роторный двигатель и Genesis:процесс становления, название говорящее о появлении нового класса двигателей), удалось решить основные проблемы таких двигателей — токсичность выхлопа и неэкономичность. По сравнению с двигателями-предшественниками, удалось сократить потребление масла на 50 %, бензина на 40 % и довести выброс вредных окисей до норм, соответствующих Euro IV. Двухкамерный двигатель «Renesis» объёмом всего 1,3 л выдаёт мощность в 250 л. с. и занимает немного места в моторном отсеке. Следующая модель двигателя Renesis 2 16X имеет объём 1,6 литра, и при большей мощности, нагревается меньше.

Автомобили марки Mazda с буквами RE в наименовании (первые буквы от названия «Renesis») могут использовать в качестве топлива как бензин, так и водород (так как менее чувствителен к детонации, чем обычный двигатель, использующий возвратно-поступательное движение поршня). Это явилось вторым витком роста внимания к РПД со стороны разработчиков.

Сложность производства деталей

Кроме того, стоит отметить высокую стоимость производства деталей данного двигателя, которая объяснялась сложностью изготовления ротора. Для того чтобы данный механизм правильно прошел эпитрохоидальную кривую, нужна высокая геометрическая точность (для цилиндра в том числе). Поэтому при изготовлении роторных двигателей невозможно обойтись без специализированного дорогостоящего оборудования и особых знаний в технической области. Соответственно, все эти затраты заранее закладываются в цену автомобиля.

Авиационные двигатели[править | править код]

В начале 1950-х годов была создана серия авиадвигателей ВП-760, ВП-1300, ВП-2650 — пятилучевых двухтактных звёзд мощностью от 40 до 130 л. с. и весом от 25 до 100 кг, сотрудника Пермского моторостроительного завода 19, авиационного инженера Валентина Валентиновича Полякова (поршневики; вращающийся золотниковый ГРМ и двухступенчатые поршни, совмещённые с нагнетательными, никакого отношения к Ванкелю не имеют) созданных для лёгкой авиационной техники и прошедших успешные испытания в небольшой серии в ДОСААФ.[5] Позднее, в 1990-х годах, в Научно-техническом центре ВАЗ были созданы ВАЗ-416, ВАЗ-426, ВАЗ-526.

Несмотря на ряд попыток установки двигателя Ванкеля на самолётах (опытные образцы испытывались в разных странах с 1950-х годов), он не нашёл широкого применения в авиации. В настоящее время (2011) двигатель Ванкеля устанавливается на некоторые модели мотопланеров Schleicher.

В 2019 году российские учёные из Центрального института авиационного моторостроения им. П. И. Баранова и Фонда перспективных исследований решили эту проблему, создав РПД на основе материалов нового поколения — интеркерамоматричных и металлокерамоматричных композитов. Согласно результатам испытаний, износ этих элементов пренебрежительно мал. Все они сохранили свою работоспособность, подтвердив возможность и перспективность применения композиционных материалов для изготовления наиболее нагруженных и проблемных элементов РПД. В новом отечественном двигателе применена также специально разработанная для РПД система турбонаддува с охлаждением воздуха и новая система управления.[6]

Смесеобразование

В теории в РПД применяют несколько разновидностей смесеобразования: внешнее и внутреннее, на основе жидких, твердых, газообразных видов топлива.
Касательно твердых видов топлива стоит отметить, что их первоначально газифицируют в газогенераторах, так как они приводят к повышенному золообразованию в цилиндрах. Поэтому большее распространение на практике получили газообразные и жидкие топлива.
Сам механизм образования смеси в двигателях Ванкеля будет зависеть от вида применяемого топлива.
При использовании газообразного топлива его смешение с воздухом происходит в специальном отсеке на входе в двигатель. Горючая смесь в цилиндры поступает в готовом виде.

Из жидкого топлива смесь приготавливается следующим образом:

  1. Воздух смешивается с жидким топливом перед поступлением в цилиндры, куда поступает горючая смесь.
  2. В цилиндры двигателя жидкое топливо и воздух поступают по отдельности, и уже внутри цилиндра происходит их смешивание. Рабочая смесь получается при соприкосновении их с остаточными газами.

Соответственно, топливно-воздушная смесь может готовиться вне цилиндров или внутри их. От этого идет разделение двигателей с внутренним или внешним образованием смеси.

Технические характеристики роторно-поршневого двигателя

параметры ВАЗ-4132 ВАЗ-415
число секций 2 2
Рабочий объем камеры двигателя, куб.см 1,308 1,308
степень сжатия 9,4 9,4
Номинальная мощность, кВт (л.с.) / мин-1 103 (140) / 6000 103 (140) / 6000
Максимальный крутящий момент, Н * м (кгс * м) / мин-1 186 (19) / 4500 186 (19) / 4500
Минимальная частота вращения эксцентрикового вала на холостом ходу, мин-1 1000 900

Масса двигателя, кг

136

113

Габаритные размеры, мм

   

высота

560

570

ширина

546

535

длина

495

665

Минимальный удельный расход топлива (по ВСХ), г / кВт *

ч

(г / л.с. * Час)

312.2 (230)

312.2 (230)

Расход масла в% от расхода топлива

0,7

0,6

Ресурс двигателя до первого капитального ремонта, тыс. Км

125

125

назначение

ВАЗ-21059/21079

ВАЗ-2108/2109/21099/2115/2110

выпускаются модели

модель

двигатель РПД

Время разгона 0-100, сек

Максимальная скорость, км ч

ВАЗ 21018

ВАЗ-311

160

ВАЗ 21019

ВАЗ-411

178

ВАЗ 21059

ВАЗ-4132

9

180

ВАЗ 21079

ВАЗ-4132

9

180

ВАЗ 2108-91

ВАЗ-415

8

200

ВАЗ 2109-91

ВАЗ-415

9

190

ВАЗ 21099-91

ВАЗ-415

9

190

ВАЗ 2110-91

ВАЗ-415

9

190

ВАЗ 2115-91

ВАЗ-415

9

190

Разные конструкции и разработки роторных двигателей

Двигатель Ванкеля

Двигатель Желтышева

Двигатель Зуева

Список автомобилей с роторно-поршневым двигателем

Марка Модель
NSU Spider
Ro80
Mazda Cosmo Sport (110S)
Familia Rotary Coupe
Parkway Rotary 26
Capella (RX-2)
Savanna (RX-3)
RX-4
RX-7
RX-8
Eunos Cosmo
Rotary Pickup
Luce R-130
Mercedes C-111
Corvette XP-882 Four Rotor
Citroen M35
GS Birotor (GZ)
ВАЗ 21019 (Аркан)
2105-09
ГАЗ 21
24
3102

Разные роторные маздыSavanna RX-7

КПД роторно-поршневой конструкции

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:

  1. Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).

Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.

  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Список роторных двигателей Mazda

Тип Описание
40A Первый стендовый экземпляр, радиус ротора 90 мм
L8A Система смазки с сухим картером, радиус ротора 98 мм, объем 792 куб. см
10A (0810) Двухсекционный, 982 куб. см, мощность 110 л. с., смешение масла с топливом для смазки, вес 102 кг
10A (0813) 100 л. с., увеличение веса до 122 кг
10A (0866) 105 л. с., технология снижения выбросов REAPS
13A Для переднеприводной R-130, объем 1310 куб. см, 126 л. с., радиус ротора 120 мм
12A Объем 1146 куб. см, упрочнен материал ротора, увеличен ресурс статора, уплотнения из чугуна
12A Turbo Полупрямой впрыск, 160 л. с.
12B Единый распределитель зажигания
13B Самый массовый двигатель, объем 1308 куб. см, низкий уровень выбросов
13B-RESI 135 л. с., RESI (Rotary Engine Super Injection) и впрыск Bosch L-Jetronic
13B-DEI 146 л. с., переменный впуск, системы 6PI и DEI, впрыск с 4 инжекторами
13B-RE 235 л. с., большая HT-15 и малая HT-10 турбины
13B-REW 280 л. с., 2 последовательные турбины Hitachi HT-12
13B-MSP Renesis Экологичный и экономичный, может работать на водороде
13G/20B Трехроторные двигатели для автогонок, объем 1962 куб. см, мощность 300 л. с.
13J/R26B Четырехроторные, для автогонок, объем 2622 куб. см, мощность 700 л. с.
16X (Renesis 2) 300 л. с., концепт-кар Taiki

Capella RX-2

Правила эксплуатации роторного двигателя

Эксперты рекомендуют в обслуживании придерживаться следующих правил:

  1. замену масла производить каждые 3-5 тысяч километров пробега. Нормальным считается расход 1.5 литра на 1000 км.
  2. следить за состоянием масляных форсунок, средний срок их жизни составляет 50 тысяч.
  3. менять воздушный фильтр каждые 20 тысяч.
  4. использовать только специальные свечи, ресурс 30-40 тысяч километров.
  5. заливать в бак бензин не ниже АИ-95, а лучше АИ-98.
  6. замерять компрессию при замене масла. Для этого используется специальный прибор, компрессия должна быть в пределах 6.5-8 атмосфер.

При эксплуатации с компрессией ниже этих показателей, стандартного ремкомплекта может оказаться недостаточно – придется менять целую секцию, а возможно и весь движок.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...