Пуск электродвигателя постоянного тока – ООО «СЗЭМО Электродвигатель»

Какие особенности нужно учесть при пуске электродвигателя постоянного тока. Дополнительные устройства, применяющиеся для снижения пускового тока.

Прямой пуск

Из всех электродвигателей постоянного тока основная градация при выборе способа их запуска должна учитывать мощность устройства.

В целом выделяют три вида пуска:

  • малой мощности;
  • средней;
  • большой мощности.

Для прямого запуска подойдут только маломощные электродвигатели, которые потребляют до 1кВт электроэнергии в сети.  При прямых запусках электродвигателя все напряжение сразу подается на рабочую обмотку. Это обуславливает возникновение максимального пускового тока из-за отсутствия естественной компенсации за счет ЭДС противодействия.

С физической точки зрения ситуация в обмотках ротора будет выглядеть следующим образом: в момент подачи напряжения сила тока в обмотках равна нулю, поэтому его значение будет определяться по формуле:

I = U/Rобм, где

U – приложенная к выводам номинальное напряжение, Rобм – сопротивление катушки.

В этот момент величина токовой нагрузки электродвигателя постоянного тока является максимальной, он может отличаться от номинального значения в 1,5 – 2,5 раза. После этого  протекание тока обуславливает генерацию ЭДС  противодействия, которая компенсирует пусковую нагрузку до установки номинальной мощности, тогда ток станет:

I = (U — Eпрот)/Rобм

В мощных устройствах сопротивление обмоток якоря может равняться 1 или 0,5 Ом, из-за чего ток при запуске электродвигателя может достигнуть 200 – 500 А, что в 10 – 50 раз будет превышать допустимые величины. Это, в свою очередь, может привести к термическому отпуску металла, деформации проводников, разрушению колец или щеток скользящего контакта. Поэтому двигатели постоянного тока средней и большой мощности должны вводиться в работу реостатным запуском или путем подачи заведомо пониженного напряжения, прямой пуск для них крайне опасен.

Устройства для ограничения пускового тока двигателя постоянного тока

Единственным эффективным методом ограничения пускового момента до допустимых значений является метод включения в цепь пускового сопротивления – активного или реактивного (индуктивного). В цепи ротора мотора такое сопротивление возникает сразу при пуске электродвигателя, благодаря чему значение пускового тока снижается и создаётся необходимый пусковой момент. При этом в данной схеме предпочтительно использовать ступенчатое пусковое сопротивление, позволяющее осуществлять постепенное изменение силы пускового тока. Для управления включением и выключением отдельных ступеней применяются специальные устройства.

Контроллер электродвигателя постоянного тока

Основным назначением этого прибора является контроль запуска электродвигателя и регулировка его скоростей, однако его применение позволяет также использовать функции реверса и электроторможения двигателя; управление электродвигателем через контроллер даёт возможность изменения электрического сопротивления цепи. На современном рынке представлен широкий выбор различных моделей контроллеров, что позволяет подобрать модель с оптимальными техническими характеристиками и предпочтительным способом управления: ручным, механическим или электронным.

Контактор электродвигателя

Контакторы электродвигателей представляют собой электромагнитные устройства, применяющиеся для дистанционного управления электродвигателями. Существуют однополюсные и многополюсные модели контакторов. Для применения совместно с электродвигателями постоянного тока наилучшим образом подходят модели с одним или двумя полюсами; агрегаты, имеющие три и более полюсов, предназначены для использования с механизмами переменного тока.

Коммутатор

Коммутаторы, или распределители, являются устройствами, основное назначение которых – изменение соединений в электрической цепи. Пусковое сопротивление, обеспечиваемое коммутатором, зависит от конкретной модели, однако при любом значении оно положительно сказывается на состоянии электродвигателя и предохраняет его от перегрузок.

При настройке устройств, использующихся для ограничения пускового тока электродвигателя, важно помнить, что значение пускового тока нужно, по возможности, сводить к допустимому минимуму: такой подход значительно продлит срок службы электродвигателя и оправдает затраты на приобретение дополнительных управляющих устройств: такой подход значительно продлит срок службы электродвигателя и оправдает затраты на приобретение дополнительных управляющих устройств, в широком ассортименте представленных в каталоге Степмотор.

Пуск электродвигателя постоянного тока

Особенности пуска и кратность тока

Пусковые токи оцениваются по тем нагрузкам на электродвигатель, которые испытывают их рабочие обмотки в момент подачи на них напряжения. Чаще всего они превышают нормируемый показатель в 4-8 раз. Реальная величина, учитывающая эту разницу, называется кратностью и вводится как поправочный коэффициент (фото ниже).

Что такое пусковой ток двигателя?

Когда известен введенный таким образом коэффициент – определить величину пускового тока не составит труда.

Дополнительная информация: Не следует путать две характеристики двигателя: его номинальное и рабочее токовые значения.

Их различие проявляется в следующем:

  • Номинальным считается ток, протекающий в катушках при длительной эксплуатации агрегата и ограниченный только температурой статора (степенью его нагрева).
  • Рабочий же показатель характеризует реальный ток в настоящий момент времени.
  • Он обычно равен или чуть ниже номинального значения.

Введенный коэффициент зависит от мощности электрического движка и от количества пар полюсов в нем. При низкой заявленной мощности он будет меньше. Та же зависимость наблюдается и в случае с полюсами.

Прямой пуск

При n = 0 также Eа = 0 и, согласно выражению (5), в статье “Общие сведения о двигателях постоянного тока”

В нормальных машинах Rа = 0,02 – 0,1, и поэтому при прямом пуске с U = Uн ток якоря недопустимо велик:

Iа = (5 – 10) Iн .

Вследствие этого прямой пуск применяется только для двигателей мощностью до нескольких сотен ватт, у которых Rа относительно велико и поэтому при пуске Iа ≤ (4 – 6) Iн, а процесс пуска длится не более 1 – 2 с.

Что происходит при пуске двигателя

По мере нарастания токовой нагрузки на обмотке статора увеличивается крутящий момент электродвигателя, который через вал передается на его подвижную часть – ротор. Чем быстрее возрастает крутящий момент, тем сильнее разогревается обмотка статора.

Это явление может привести к:

  • выходу из строя изоляции;
  • возникновению вибраций;
  • деформации механических частей двигателя;
  • полному выходу из строя мотора.

Большой ток может вызвать бурное искрение под щетками, что приведет к выходу из строя коллектора.

Избежать поломки можно, понизив пусковой ток до номинальной частоты вращения сразу после старта электромотора. Добиться этого можно несколькими способами. Выбор оптимального варианта зависит от технических характеристик мотора и его назначения.

Почему появляется пусковой ток

Есть причина появления пускового тока. Подобно некоторым устройствам или системам, которые имеют развязывающий конденсатор или сглаживающий конденсатор, при запуске потребляется большое количество тока для их зарядки. Ниже приведенная диаграмма даст вам представление о разнице между пусковым, пиковым и установившимся током цепи.

Пусковой ток

Пиковый ток: это максимальное значение тока, достигаемое сигналом в положительной или отрицательной области.

Ток установившегося состояния: он определяется как ток в каждом интервале времени, который остается постоянным в цепи. Ток установившегося состояния достигается, когда di/dt = 0, что означает, что ток остается неизменным во времени.

Особенности пускового тока: появляется мгновенно, когда устройство включается; появляется на короткий промежуток времени; выше номинального значения цепи или устройства.

Плюсы дизельных генераторов:

• Высокая мощность. Показатели могут варьироваться от 3 до 200 и выше кВт, когда у бензиновых максимальный результат — 18 кВт.
• Двигатель различается в бытовых и профессиональных установках. У первого типа оборудования время наработки до отказа достигает 300-400 часов, у второго — до 5.000 часов.
• Автоматическая стабилизация производимого напряжения. На современном рынке есть модели с регулятором, который контролирует обороты двигателя. Он дает возможность генератору самостоятельно адаптировать напряжение при появлении скачков под заявленные требования пользователя.
• Показатель КПД достигает 50%.
• Большой моторесурс. Генераторы работают без перерывов длительное время, поэтому выступают в качестве дополнительного и основного источника питания.
• Использовать установку можно на предприятиях для обеспечения стабильной работы — это позволит избежать нарушений технических процессов, которые становятся причиной браков.
• Практически нет ограничений в температурном показателе окружающей среды. Климатические условия никоим образом не влияют на работу генератора, если температура варьируется от -40°С до +40°С, а влажность не превышает 95%.
• Новые модели дизельных генераторов оснащены шумоизолирующим корпусом, поэтому работают относительно беззвучно.

Пусковой ток трансформатора

Пусковой ток трансформатора определяется как максимальный мгновенный ток, потребляемый трансформатором, когда вторичная сторона не нагружена или находится в состоянии разомкнутой цепи. Этот бросок тока вредит магнитным свойствам сердечника и вызывает нежелательное переключение автоматического выключателя трансформатора.

Пусковой ток трансформатора

Величина пускового тока зависит от точки волны переменного тока, в которой запускается трансформатор. Если трансформатор (без нагрузки) включается, когда напряжение переменного тока достигает своего пика, тогда пусковой ток не возникает при запуске, и если трансформатор (без нагрузки) включается, когда напряжение переменного тока проходит через ноль, то значение броска ток будет очень высоким, и он также будет превышать ток насыщения, как вы можете видеть на изображении выше.

Пуск с помощью пускового реостата

В этом случае в цепь вводится переменное сопротивление, которое на начальном этапе обеспечивает снижение токовой нагрузки, пока вращение ротора не достигнет установленных оборотов. По мере стабилизации ампеража до стандартной величины в реостате уменьшается сопротивление от максимального значения до минимального.  

Расчет электрической величины в этом случае будет производиться по формуле:

I = U / (Rобм + Rреостата)

В лабораторных условиях уменьшение нагрузки может производиться вручную – посредством перемещения ползунка реостата. Однако в промышленности такой метод не получил широкого распространения, так как процесс не согласовывается с токовыми величинами.  Поэтому применяется регулировка по току, по ЭДС или по времени, в первом случае задействуется измерение величины в обмотках возбуждения, во втором, на каждую ступень применяется выдержка времени.

Оба метода используются для запуска электродвигателей:

  • с последовательным;
  • с параллельным возбуждением;
  • с независимым возбуждением.

Запуск ДПТ с параллельным возбуждением

Такой запуск электродвигателя осуществляется посредством включения и обмотки возбуждения, и якорной к напряжению питания электросети, друг относительно друга они располагаются параллельно. То есть каждая из обмоток электродвигателя постоянного тока находятся под одинаковой разностью потенциалов.  Этот метод запуска обеспечивает жесткий режим работы, используемый в станочном оборудовании. Токовая нагрузка во вспомогательной обмотке  при запуске имеет сравнительно меньший ток, чем обмотки статора или ротора.

Для контроля пусковых характеристик сопротивления вводятся в обе цепи:

Запуск ДПТ с параллельным возбуждениемРис 1. Запуск ДПТ с параллельным возбуждением

На начальном этапе вращения вала позиции реостата обеспечивают снижение нагрузки на электродвигатель, а затем их обратно выводят в положение нулевого сопротивления. При затяжных запусках выполняется автоматизация и комбинация нескольких ступеней пусковых реостатов или отдельных резисторов, пример такой схемы включения приведен на рисунке ниже:

Ступенчатый пуск двигателя параллельного возбужденияРис. 2. Ступенчатый пуск двигателя параллельного возбуждения

  • При подаче напряжения питания на электродвигатель ток, протекающий через рабочие обмотки и обмотку возбуждения, за счет магазина сопротивлений Rпуск1, Rпуск2, Rпуск3 нагрузка ограничивается до минимальной величины.
  • После достижения порогового значения минимума токовой величины происходит последовательное срабатывание  реле K1, K2, K3.
  • В результате замыкания контактов реле K1.1 шунтируется первый резистор, рабочая характеристика в цепи питания электродвигателя скачкообразно повышается.
  • Но после снижения ниже установленного предела замыкаются контакты K2.2 и процесс повторяется снова, пока электрическая машина не достигнет номинальной частоты вращения.

Торможение электродвигателя постоянного тока может производиться в обратной последовательности за счет тех же резисторов.

Запуск ДПТ с последовательным возбуждением

Запуск ДПТ с последовательным возбуждениемРис. 3. Запуск ДПТ с последовательным возбуждением

На рисунке выше приведена принципиальная схема подключения электродвигателя с последовательным возбуждением. Ее отличительная особенность заключается в последовательном соединении катушки возбуждения Lвозбуждения и непосредственно мотора, переменное сопротивление Rякоря также вводится последовательно.

По цепи обеих катушек протекает одинаковая токовая величина, эта схема обладает хорошими параметрами запуска, поэтому ее часто используют в электрическом транспорте. Такой электродвигатель запрещено включать без усилия на валу, а регулирование частоты осуществляется в соответствии с нагрузкой.

Пуск ДПТ с независимым возбуждением

Подключение электродвигателя в цепь с  независимым возбуждением производится путем  ее запитки от отдельного источника.

Запуск ДПТ с независимым возбуждениемРис. 4. Запуск ДПТ с независимым возбуждением

На схеме приведен пример независимого подключения, здесь катушка Lвозбуждения и сопротивление в ее цепи Rвозбуждения получают питание отдельно от обмоток двигателя током независимого устройства. Для обмоток двигателя также включается регулировочный реостат Rякоря. При этом способе запуска машина постоянного тока не должна включаться без нагрузки или с минимальным усилием на валу, так как это приведет к нарастанию оборотов и последующей поломке.

Какой вред от пускового тока?

Пусковой ток – это проблема. Это –

  • перегрузка питающей сети, приводящая к нагреву (вплоть до отгорания контактов) и проседанию напряжения;
  • чрезмерный износ, перегрузка и перегрев двигателя, у некоторых производителей среди параметров двигателя указывается максимальное количество пусков в час или в сутки – именно из-за перегрева;
  • износ и перегрузка механического привода (подшипники, редукторы, ремни), особенно обладающего большим моментом инерции,
  • помехи, вызванные включением контакторов, которые передаются не только по проводам, но и через электромагнитное поле,
  • проблемы с технологией – многие процессы нельзя начинать резко.

От пускового тока перегружается всё, и момент пуска становится в тягость вcем участникам процесса. Именно в этот критический момент может проявиться “слабое звено”. Кроме того, многие участники электропитания, работающие в этой сети, испытывают проблемы – например, лампочки снижают яркость из-за снижения напряжения, а контроллеры могут зависнуть из-за мощной помехи.

И в то же время пусковой ток – это проблема, от которой никуда не деться, если сразу подавать на двигатель номинальное питание и не использовать специальные методы.

Поэтому разберём,

Пусковой ток двигателя

Как и трансформатор, асинхронный двигатель не имеет непрерывного магнитного пути. Сопротивление асинхронного двигателя высокое из-за воздушного зазора между ротором и статором. Следовательно, из-за такого характера индуктивного устройства с высоким сопротивлением требуется большой ток намагничивания для создания вращающегося магнитного поля при запуске. График ниже показывает пусковые характеристики двигателя при полном напряжении.

Пусковой ток двигателя

Как вы можете видеть на графике, пусковой ток и пусковой момент очень высоки в начале. Этот высокий пусковой ток может повредить электрическую систему, а начальный высокий крутящий момент может повлиять на механическую систему двигателя. Если уменьшить начальное значение напряжения на 50%, это может привести к снижению крутящего момента двигателя на 75%. Таким образом, для преодоления этих проблем используются схемы питания с плавным пуском.

Как уменьшить пусковой ток асинхронного двигателя

Решить проблему большого пускового тока электрически можно двумя путями:

  1. Вначале подавать на двигатель пониженное напряжение, а затем, по мере разгона, напряжение и скорость вращения поднять до номинального значения. Такой способ применяется в электронных устройствах запуска двигателей – софтстартерах (УПП) и преобразователях частоты (частотниках).
  2. Использовать ограничители пускового тока, когда при пуске двигатель питается через мощные резисторы, а потом по таймеру переключается на номинал. Сопротивление резисторов соизмеримо с сопротивлением обмотки стартера (единицы Ом, в зависимости от мощности). Это устройство легко сделать самому (контактор + реле времени).
  3. Сразу подавать полное напряжение, но сначала подключать обмотки так хитро, чтобы двигатель не раскручивался на полную мощность. И только когда в этом режиме двигатель раскрутится насколько это возможно, включать его на полную. Эта схема называется “Звезда – Треугольник”, читайте в следующей статье.

Можно сконструировать какую-то муфту, коробку передач, вариатор – для того чтобы раскрутить двигатель вхолостую, а потом подключить потребителя механического момента.

В современном оборудовании двигатели мощнее 2,2 кВт практически никогда напрямую не включают, поэтому для них пусковые токи рояли не играют. Для уменьшения пускового тока (и не только) в основном применяют преобразователи частоты, о которых будут отдельные статьи.

Основное преимущество ГЭУ двойного рода тока с управляемыми выпрямителями состоит в возможности использования единой судовой электростанции для питания ГЭД через управляемый выпрямитель (система УВ — Д) и питания остальных потребителей судна.

На современных судах количество и мощность потребителей электроэнергии увеличиваются, причем мощность судовой электростанции становится соизмеримой с мощностью тепловых двигателей, приводящих в действие гребные винты. На судах большинства типов потребление электроэнергии на ходу судна значительно меньше, чем на стоянке при производстве грузовых операций. Бывают режимы, когда максимальный расход электроэнергии приходится на время малого хода судна, что характерно для рыбопромысловых судов. ГЭУ с единой электростанцией и ГЭД, включенным по системе УВ — Д, позволяют уменьшить число агрегатов и размеры машинного отделения, обеспечивают полную загрузку генераторных агрегатов на ходу и на стоянке, обладают высокой живучестью и надежностью.

Генераторы работают на шины ГРЩ при неизменной частоте и напряжении. Частота вращения ГЭД постоянного тока регулируется изменением напряжения на выходе управляемого выпрямителя (УВ), а реверс осушествляется переключением обмотки возбуждения ГЭД.

Количество судов с использованием ГЭУ с единой электростанцией и ГЭД, включенным по системе УВ — Д, с каждым годом увеличивается. Такие установки представлены судами различных типов: ледоколами, паромами, цементовозами, траулерами, научно-исследовательскими судами и т. п.

В каждом доме и на каждом предприятии в ящике с инструментами должна быть клейкая лента ПВХ. Она требуется для обеспечения изоляции между предметами, или когда требуется срочно отремонтировать технику или мебель. Большой ассортимент клейких лент для изоляции предлагает компания Folsen. Далее рассмотрим разновидности и особенности клейких изоляционных лент.

Определение точного значения

Получить точные данные по искомой величине можно так:

  • По осциллографу, снимающему сигнал на шунте во время запуска двигателя.
  • Измерение при пониженном напряжении на обмотках (в 5-10 раз ниже номинального).
  • Снятие показаний с помощью токоизмерительных клещей.

В первом случае удается зафиксировать всплеск напряжения на экране осциллографа и сравнить его с установившимся значением. Второй вариант хорош тем, что при измерении ротор двигателя не перегревается и не вносит искажений в процесс снятия показаний. Использование токоизмерительных клещей – самый простой способ, но он не обеспечивает требуемой точности (фото ниже).

Что такое пусковой ток двигателя?

Генераторное рекуперативное торможение

Этот режим наступает, когда частота вращения якоря превышает частоту вращения холостого хода n0.

В этих условиях ЭДС машины Еа =  сеФn0 превышает напряжение питающей сети (Еа > Uном), при этом ток якоря, а следовательно, и электромагнитный момент меняют свое направление на противоположное. В итоге машина постоянного тока переходит в генераторный режим и вырабатываемую при этом электроэнергию отдает в сеть. Электромагнитный момент двигателя становится тормозящим и противодействует внешнему вращающему моменту, создаваемому силами инерции вращающего с прежней скоростью якоря (рис. 13.15, а). Этот процесс торможения будет продолжаться до тех пор, пока частота вращения якоря, уменьшаясь, не достигнет значения n0.

Таким образом, для перехода двигателя в режим генераторного рекуперативного торможения не требуется изменений в схеме включения двигателя.

Генераторное рекуперативное торможение — наиболее экономичный вид торможения, так как он сопровождается возвратом энергии в сеть. Применение этого способа торможения является эффективным энергосберегающим средством в электроприводе Он целесообразен в электротранспортных средствах, работа которых связана с частыми остановками и движением под уклон. В этом случае кинетическая энергия движения транспортного средства (трамвай, троллейбус, электропоезд) преобразуется в электрическую энергию и возвращается в сеть.

Возможен способ перевода двигателя в режим генераторного рекуперативного торможения и при установившейся частоте вращения якоря. Для этого необходимо увеличить в двигателе магнитный поток возбуждения, т.е. ток в обмотке возбуждения.

Из выражения ЭДС якоря Еа = сеФn следует, что с ростом магнитного потока возбуждения Ф при неизменной частоте вращения n ЭДС якоря Еа увеличивается, что ведет к уменьшению тока в цепи якоря:

4

При ЭДС Еа = U ток якоря Ia = 0, а частота вращения якоря достигает значения n = n0. При дальнейшем увеличении потока возбуждения Ф, а следовательно, возрастании ЭДС якоря Еа пограничная частота вращения снижается (см. 13.12, б), а частота вращения якоря, оставаясь практически неизменной за счет сил инерции вращающихся частей электропривода, начинает превышать пограничную частоту n0. При этом ЭДС якоря превышает напряжение сети и двигатель переходит в режим генераторного рекуперативного торможения.

ПВХ-изолента пламегасящая

В основе такой изоленты лежит мягкая плёнка ПВХ толщиной 0,10 мм. Используют пламегасящую ленту при ремонте проводов или автомобилей, или в других бытовых ситуациях. Изолента выдерживает ток высокого напряжения, что обеспечивает безопасность работы приборов.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...