2. Почему плотность холодного воздуха больше чем теплого?
На самом ли деле теплый воздух легче холодного. Давайте проверим это утверждение и взвесим две молекулы кислорода теплую, при температуре +20º С и холодную, при температуре 0º С. Но как это сделать, на каких весах измерить разницу веса между молекулами? Судя по рисунку, автору удалось это сделать с помощью рычажных весов (детской качели).
Трудность заключается еще и в том, что мы не сможем в земных условиях точно оценить вес даже, заключенных в оболочку, достаточно больших одинаковых объемов воздуха. Оценке мешает эффект плавучести (статья «Гравитационная температура»). Остается одно, разобраться с этим явлением с энергетической точки зрения. Если мы возьмем молекулы одного и того же газа, но при разных температурах, то понятно, что молекула, имеющая более высокую температуру, будет более энергонасыщена и будет иметь более высокую скорость перемещения.
А за счет какой энергии вообще молекулы перемещаются? Классическая молекулярно-кинетическая теория на этот вопрос не дает вразумительного ответа. Этот физический процесс был основательно исследован в главе «Броуновское движение». Молекулы двигаются благодаря энергии импульсов придачи «вперед за снарядом». Под действием этих импульсов электромагнитного крафонного (краснофотонного) излучения, молекулы пара стремительно разлетаются в разные стороны, но в большей степени вверх (область пониженного давления), тем самым, разреживая и освобождая пространство, в которое устремляется новые молекулы. Те, в свою очередь, поступают как первые. Тем самым мы видим восходящий поток пара. Этот процесс в динамике идет по нормали до первой преграды – потолка.
Попутно еще один вопрос: за счет чего уплотняется холодный воздух?
Конвективные перемещения осуществляются за счет разности давлений, разности температур и гравитации. Холодный воздух из открытой форточки непрерывным потоком падает на пол нашей комнаты. Да, температура холодного воздуха ниже, чем теплого и что из этого следует? Ранее было выяснено, что гравитация квантуется, т.е. передается импульсами. Количество этих импульсов гравитационного излучения земли и нашего пола распределяется по всей поверхности примерно одинаково. Тогда остается излучение самих молекул воздуха. Молекулы имеют маленькую массу и охотно отзываются на собственный импульс придачи, после чего устремляются в том же направлении отстрела этого импульса. Статистически у теплых молекул частота излучения выше, чем у холодных. Они чаще отстреливают свои импульсы в пространство, где меньше давление, поэтому теплые молекулы летят в сторону потолка, освобождая место холодным. Получается, за счет этого электромагнитное, гравитационное излучение земли подтягивает к полу в большей степени холодный воздух, соответственно, теплый выталкивается вверх. Холодные молекулы имеют меньшую скорость, поэтому находятся в более плотном состоянии. Вот по такой технологии идет конвекция в любой газовой среде.
Теплый воздух в комнате выходит из температурного равновесия и постепенно внедряется в ряды холодного, отдавая часть своей теплоты.
3. Эйнштейн против Клапейрона и Менделеева
Рис. 2. На рисунке условно показано равное количество молекул азота (1) и молекул кислорода (2), находящихся при разных температуре и занимающих не равные объемы. a – при высокой температуре; b – при низкой температуре.
Обычно объясняют, что холодный воздух выталкивает теплый и тот поднимается вверх. На самом деле никто никого не толкает и не выталкивает. Весь воздух подвержен притяжению Земли и эта энергия его подпитывает. В зависимости от энергонасыщенности происходит температурная сегрегация по высоте расположения. Молекулы теплого воздуха имеют большую скорость перемещения, они разлетаются на большие расстояния, происходит больше столкновений между ними и они занимают больший объем (рис. 2а).
А теперь для доказательства равенства масс молекул, находящихся под разным тепловым потенциалом, я призвал на помощь два уравнения из классической физики.
1) уравнение состояния для идеального газа Клапейрона-Менделеева.
(1)
(2)
Где, m – масса газа, P – давление, V – объем, M – молярная масса, R – универсальная газовая постоянная, Т – температура.
Замечание, сейчас принято обозначать температуру греческой буквой Θ (Тэта). Чтобы не нарушать написание известной формулы оставим символ Т.
Из (2) видно, что при повышении температуры, увеличивается V (при постоянном давлении P). При этом масса газа (воздуха) остается постоянной.
2) Уравнение Эйнштейна. Энергия излучения связана с его массой.
E=mc2 (3)
m=E/c2 (4)
Подставив в формулы (3, 4) реальные значения, можно убедиться без лишних доказательств, что кубовый объем газа, имеющий меньшую энергию Е (температуру и скорость молекул) будет иметь и меньшую массу.
Тогда можно заключить, что холодный воздух легче теплого, и должен подниматься вверх, а он падает вниз. Вот где нелогичная конвекция и Эйнштейн против Клапейрона и Менделеева.
В чем же дело? А дело в серьезном разбирательстве, связанном со знаменитой формулой. Если в расчете использовать формулу (3), то килограммовый куб воздуха будет иметь энергию 9·1016 Дж. Данная величина приблизительно равна электрической энергии 3∙1010 кВт∙ч! Такое количество электроэнергии потребляют США за один день! Невероятно, но где энергия? А ее, увы, не видно.
Этому разбирательству посвящена отдельная статья под названием: «Энергия покоя». А сейчас, чтобы выбраться из создавшейся коллизии введем в данное уравнение энергетический коэффициент GE.
T – температура тела в Кельвинах
Tmax – максимально возможная температура вещества в природе.
E=GE·mc2 (5)
Отсюда масса
(6)
(7)
Используя в расчетах уравнение (7) можно убедиться, что при прочих равных условиях, массы холодного и теплого воздуха будут равны. Такой же расчет дает по формуле (2) Клапейрона-Менделеева и противостояние с Эйнштейном прекращается. И что самое главное, энергия газового куба снижается до удобоваримого значения, на десять порядков! Все расчеты привели меня к заключению, что уравнение Эйнштейна не общее, а частное, для максимального значения температуры при GE=1.
Электромагнитное, крафонное излучение Земли постоянно мониторит пространство и подтягивает атмосферу с паром вниз, но теплый воздух всегда оказываются наверху. Это происходит потому, что холодные молекулы реже отстреливают свои крафоны придачи в окружающее пространство из-за их меньшей энергонасыщенности.
Теплый воздух в комнате находится в термодинамическом равновесии, поэтому его молекулы продолжают хаотично двигаться, постепенно внедряясь в ряды холодного, отдавая часть своей теплоты.
Несмотря на то, что холодный воздух находится всегда внизу, масса теплых и холодных молекул остается одинаковой.
Конвективные перемещения в жидкости можно объяснить аналогичным способом.
Объемная плотность газа существенно зависит от температуры газа.
Как было указано выше, более горячий газ устремляется вверх не из-за его легкости, а по причине поднятия молекул за счет крафонного излучения. По сути, о какой легкости или тяжести мы говорим, каждая молекула находится во взвешенном состоянии, но не в какой-то среде, а фактически, в вакууме. Равные по массе и одинаковой температуре молекулы будут иметь одинаковый объемный вес. Известно, если охладить кубометр воздуха, то получим 1,2 литра в жидком состоянии. Отсюда вопрос: какое вещество занимает 998,8 литра этого объема воздуха, если мы уберем энергию расширения, то есть теплоту?!
- Перельман Я.И., Знаете ли вы физику? «ТЕРРА», М. 2007
Назад Вперед